Nuprl Lemma : fpf-union-join-member
∀[A:Type]
  ∀eq:EqDecider(A)
    ∀[B:A ⟶ Type]
      ∀f,g:a:A fp-> B[a] List. ∀R:⋂a:A. ((B[a] List) ⟶ B[a] ⟶ 𝔹). ∀a:A.
        ∀x:B[a]. ((x ∈ fpf-union-join(eq;R;f;g)(a)) ⇒ (((↑a ∈ dom(f)) ∧ (x ∈ f(a))) ∨ ((↑a ∈ dom(g)) ∧ (x ∈ g(a))))) 
        supposing ↑a ∈ dom(fpf-union-join(eq;R;f;g))
Proof
Definitions occuring in Statement : 
fpf-union-join: fpf-union-join(eq;R;f;g), 
fpf-ap: f(x), 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
l_member: (x ∈ l), 
list: T List, 
deq: EqDecider(T), 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
isect: ⋂x:A. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
prop: ℙ, 
top: Top, 
fpf-union: fpf-union(f;g;eq;R;x), 
fpf-cap: f(x)?z, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
false: False, 
cand: A c∧ B, 
true: True, 
not: ¬A, 
iff: P ⇐⇒ Q
Lemmas referenced : 
assert_witness, 
fpf-dom_wf, 
fpf-union-join_wf, 
l_member_wf, 
fpf-ap_wf, 
list_wf, 
bool_wf, 
assert_wf, 
fpf_wf, 
deq_wf, 
fpf-union-join-ap, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
false_wf, 
subtype-fpf2, 
top_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
member_append, 
filter_wf5, 
subtype_rel_dep_function, 
subtype_rel_self, 
set_wf, 
member_filter, 
or_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis, 
independent_functionElimination, 
rename, 
isectEquality, 
functionEquality, 
independent_isectElimination, 
universeEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
inlFormation, 
natural_numberEquality, 
independent_pairFormation, 
productEquality, 
inrFormation, 
setEquality, 
setElimination, 
addLevel, 
orFunctionality
Latex:
\mforall{}[A:Type]
    \mforall{}eq:EqDecider(A)
        \mforall{}[B:A  {}\mrightarrow{}  Type]
            \mforall{}f,g:a:A  fp->  B[a]  List.  \mforall{}R:\mcap{}a:A.  ((B[a]  List)  {}\mrightarrow{}  B[a]  {}\mrightarrow{}  \mBbbB{}).  \mforall{}a:A.
                \mforall{}x:B[a]
                    ((x  \mmember{}  fpf-union-join(eq;R;f;g)(a))
                    {}\mRightarrow{}  (((\muparrow{}a  \mmember{}  dom(f))  \mwedge{}  (x  \mmember{}  f(a)))  \mvee{}  ((\muparrow{}a  \mmember{}  dom(g))  \mwedge{}  (x  \mmember{}  g(a))))) 
                supposing  \muparrow{}a  \mmember{}  dom(fpf-union-join(eq;R;f;g))
Date html generated:
2018_05_21-PM-09_23_33
Last ObjectModification:
2018_02_09-AM-10_19_21
Theory : finite!partial!functions
Home
Index