Nuprl Lemma : exp-minus
∀[n:ℕ]. ∀[x:ℤ]. (-x^n = if (n mod 2 =z 0) then x^n else -x^n fi ∈ ℤ)
Proof
Definitions occuring in Statement :
exp: i^n
,
modulus: a mod n
,
nat: ℕ
,
ifthenelse: if b then t else f fi
,
eq_int: (i =z j)
,
uall: ∀[x:A]. B[x]
,
minus: -n
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
nat: ℕ
,
ge: i ≥ j
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
not: ¬A
,
top: Top
,
nequal: a ≠ b ∈ T
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
iff_weakening_equal,
exp-minusone,
exp-of-mul,
int_term_value_minus_lemma,
itermMinus_wf,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_term_value_mul_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_not_lemma,
itermVar_wf,
itermConstant_wf,
itermMultiply_wf,
intformeq_wf,
intformnot_wf,
satisfiable-full-omega-tt,
le_wf,
decidable__equal_int,
nat_properties,
neg_assert_of_eq_int,
assert-bnot,
bool_subtype_base,
subtype_base_sq,
bool_cases_sqequal,
equal_wf,
eqff_to_assert,
assert_of_eq_int,
eqtt_to_assert,
bool_wf,
exp_wf2,
minus-one-mul
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
because_Cache,
sqequalRule,
isect_memberEquality,
axiomEquality,
minusEquality,
natural_numberEquality,
lambdaFormation,
unionElimination,
equalityElimination,
productElimination,
independent_isectElimination,
equalityTransitivity,
equalitySymmetry,
dependent_pairFormation,
promote_hyp,
dependent_functionElimination,
instantiate,
cumulativity,
independent_functionElimination,
voidElimination,
equalityEquality,
setElimination,
rename,
dependent_set_memberEquality,
lambdaEquality,
int_eqEquality,
intEquality,
voidEquality,
computeAll,
multiplyEquality
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[x:\mBbbZ{}]. (-x\^{}n = if (n mod 2 =\msubz{} 0) then x\^{}n else -x\^{}n fi )
Date html generated:
2016_05_15-PM-04_45_19
Last ObjectModification:
2016_01_16-AM-11_23_18
Theory : general
Home
Index