Nuprl Lemma : exp-minusone

[n:ℕ]. (-1^n if (n mod =z 0) then else -1 fi  ∈ ℤ)


Proof




Definitions occuring in Statement :  exp: i^n modulus: mod n nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: assert: b ifthenelse: if then else fi  eq_int: (i =z j) modulus: mod n btrue: tt true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q exp: i^n bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) int_nzero: -o nequal: a ≠ b ∈  bnot: ¬bb
Lemmas referenced :  le_wf and_wf neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal nequal_wf true_wf modulus_wf mod_bounds subtract-add-cancel add-one-mod-2 int_subtype_base subtype_base_sq assert_of_bnot eqff_to_assert iff_weakening_uiff not_wf bnot_wf bfalse_wf iff_transitivity int_formula_prop_eq_lemma intformeq_wf assert_of_eq_int eqtt_to_assert assert_wf btrue_wf equal_wf uiff_transitivity bool_wf eq_int_wf primrec-unroll nat_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le iff_weakening_equal ite_rw_true exp0_lemma less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename introduction intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality equalityEquality because_Cache minusEquality equalityTransitivity equalitySymmetry productElimination unionElimination equalityElimination impliesFunctionality instantiate cumulativity dependent_set_memberEquality imageMemberEquality baseClosed addLevel applyEquality promote_hyp

Latex:
\mforall{}[n:\mBbbN{}].  (-1\^{}n  =  if  (n  mod  2  =\msubz{}  0)  then  1  else  -1  fi  )



Date html generated: 2016_05_15-PM-04_45_10
Last ObjectModification: 2016_01_16-AM-11_23_59

Theory : general


Home Index