Nuprl Lemma : exp-rem_wf

[m:ℕ+]. ∀[i:ℤ]. ∀[n:ℕ].  (exp-rem(i;n;m) ∈ ℤ)


Proof




Definitions occuring in Statement :  exp-rem: exp-rem(i;n;m) nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} nat_plus: + lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) exp-rem: exp-rem(i;n;m) less_than: a < b true: True nequal: a ≠ b ∈  sq_type: SQType(T) squash: T has-value: (a)↓
Lemmas referenced :  true_wf int-value-type equal_wf value-type-has-value div_mono1 div_bounds_1 int_subtype_base subtype_base_sq nat_plus_wf nat_wf int_term_value_add_lemma itermAdd_wf decidable__lt le_wf int_formula_prop_eq_lemma intformeq_wf lelt_wf false_wf int_seg_subtype decidable__equal_int int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le nat_plus_properties int_seg_properties int_seg_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache productElimination unionElimination applyEquality setEquality hypothesis_subsumption dependent_set_memberEquality addEquality divideEquality addLevel instantiate cumulativity imageMemberEquality baseClosed remainderEquality callbyvalueReduce multiplyEquality

Latex:
\mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[i:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (exp-rem(i;n;m)  \mmember{}  \mBbbZ{})



Date html generated: 2016_05_15-PM-04_48_15
Last ObjectModification: 2016_01_16-AM-11_27_53

Theory : general


Home Index