Nuprl Lemma : div_mono1

[i,k:ℕ].  (i ÷ k < i) supposing (1 < and 0 < i)


Proof




Definitions occuring in Statement :  nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] divide: n ÷ m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: decidable: Dec(P) or: P ∨ Q prop: nequal: a ≠ b ∈  ge: i ≥  not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q nat_plus: + guard: {T} int_nzero: -o iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True less_than: a < b squash: T
Lemmas referenced :  divide_wf mul_preserves_le int_term_value_add_lemma int_term_value_mul_lemma itermAdd_wf itermMultiply_wf multiply-is-int-iff add-is-int-iff int_formula_prop_le_lemma intformle_wf decidable__le le-add-cancel zero-add add-associates add-commutes add-swap add_functionality_wrt_le less-iff-le not-lt-2 false_wf rem_bounds_1 nequal_wf div_rem_sum int_formula_prop_not_lemma intformnot_wf le_weakening2 less_than_transitivity2 div_base_case nat_wf equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_properties member-less_than less_than_wf decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis unionElimination isectElimination natural_numberEquality sqequalRule isect_memberEquality divideEquality because_Cache lambdaFormation independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll equalityTransitivity equalitySymmetry dependent_set_memberEquality productElimination independent_functionElimination addEquality applyEquality multiplyEquality imageElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed

Latex:
\mforall{}[i,k:\mBbbN{}].    (i  \mdiv{}  k  <  i)  supposing  (1  <  k  and  0  <  i)



Date html generated: 2016_05_15-PM-04_46_39
Last ObjectModification: 2016_01_16-AM-11_24_56

Theory : general


Home Index