Nuprl Lemma : extend-injection_wf
∀[a:ℕ]. ∀[f:ℕa →⟶ ℕa]. ∀[b:{a...}].  (extend-injection(a;f) ∈ ℕb →⟶ ℕb)
Proof
Definitions occuring in Statement : 
extend-injection: extend-injection(a;f)
, 
injection: A →⟶ B
, 
int_upper: {i...}
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
nat: ℕ
, 
extend-injection: extend-injection(a;f)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
inject: Inj(A;B;f)
, 
bfalse: ff
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
guard: {T}
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
int_upper: {i...}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
lelt: i ≤ j < k
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
int_seg: {i..j-}
, 
injection: A →⟶ B
Lemmas referenced : 
nat_wf, 
int_seg_wf, 
injection_wf, 
int_upper_wf, 
inject_wf, 
less_than_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
equal_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_upper_properties, 
int_seg_properties, 
false_wf, 
int_seg_subtype, 
lelt_wf, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_term_value_constant_lemma, 
itermConstant_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int
Rules used in proof : 
natural_numberEquality, 
because_Cache, 
isect_memberEquality, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
extract_by_obid, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
cumulativity, 
instantiate, 
promote_hyp, 
voidEquality, 
voidElimination, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
dependent_functionElimination, 
applyLambdaEquality, 
independent_pairFormation, 
functionExtensionality, 
applyEquality, 
independent_isectElimination, 
productElimination, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
lambdaEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[f:\mBbbN{}a  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}a].  \mforall{}[b:\{a...\}].    (extend-injection(a;f)  \mmember{}  \mBbbN{}b  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}b)
Date html generated:
2018_05_21-PM-08_16_57
Last ObjectModification:
2017_12_15-AM-11_23_34
Theory : general
Home
Index