Nuprl Lemma : final-iterate_wf
∀[A:Type]. ∀[f:A ⟶ (A + Top)].  ∀[x:A]. (final-iterate(f;x) ∈ A) supposing SWellFounded(p-graph(A;f) y x)
Proof
Definitions occuring in Statement : 
final-iterate: final-iterate(f;x)
, 
p-graph: p-graph(A;f)
, 
strongwellfounded: SWellFounded(R[x; y])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
p-graph: p-graph(A;f)
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
so_apply: x[s1;s2]
, 
strongwellfounded: SWellFounded(R[x; y])
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
and: P ∧ Q
, 
final-iterate: final-iterate(f;x)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
, 
less_than: a < b
, 
squash: ↓T
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
Lemmas referenced : 
strongwellfounded_wf, 
assert_wf, 
can-apply_wf, 
subtype_rel_union, 
top_wf, 
equal_wf, 
do-apply_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
le_wf, 
nat_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
bool_wf, 
equal-wf-T-base, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
axiomEquality, 
extract_by_obid, 
isectElimination, 
cumulativity, 
lambdaEquality, 
productEquality, 
functionExtensionality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
unionEquality, 
universeEquality, 
productElimination, 
lambdaFormation, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
unionElimination, 
applyLambdaEquality, 
baseClosed, 
imageElimination, 
equalityElimination
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  (A  +  Top)].
    \mforall{}[x:A].  (final-iterate(f;x)  \mmember{}  A)  supposing  SWellFounded(p-graph(A;f)  y  x)
Date html generated:
2018_05_21-PM-07_36_42
Last ObjectModification:
2017_07_26-PM-05_10_42
Theory : general
Home
Index