Nuprl Lemma : finite-double-negation-shift2

[A:ℙ]. ∀n:ℕ. ∀[B:ℕn ⟶ ℙ]. ((∀i:ℕn. (((B i)  A)  A))  ((∀i:ℕn. (B i))  A)  A)


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} subtype_rel: A ⊆B prop: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True less_than: a < b squash: T
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base int_seg_wf subtype_rel_self istype-nat natrec_wf nat_wf subtype_rel_function int_seg_properties nat_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf intformle_wf itermConstant_wf intformeq_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_wf subtract_wf decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__lt istype-le istype-less_than int_seg_subtype istype-false not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination setElimination rename because_Cache hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination independent_functionElimination sqequalRule functionIsType universeIsType hypothesisEquality applyEquality universeEquality inhabitedIsType isectIsType productElimination lambdaEquality_alt isectEquality functionEquality functionExtensionality equalityTransitivity equalitySymmetry approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation dependent_set_memberEquality_alt productIsType addEquality minusEquality multiplyEquality imageElimination

Latex:
\mforall{}[A:\mBbbP{}].  \mforall{}n:\mBbbN{}.  \mforall{}[B:\mBbbN{}n  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}i:\mBbbN{}n.  (((B  i)  {}\mRightarrow{}  A)  {}\mRightarrow{}  A))  {}\mRightarrow{}  ((\mforall{}i:\mBbbN{}n.  (B  i))  {}\mRightarrow{}  A)  {}\mRightarrow{}  A)



Date html generated: 2020_05_20-AM-08_05_00
Last ObjectModification: 2019_10_31-AM-10_48_54

Theory : general


Home Index