Nuprl Lemma : finite-double-negation-shift2
∀[A:ℙ]. ∀n:ℕ. ∀[B:ℕn ⟶ ℙ]. ((∀i:ℕn. (((B i) ⇒ A) ⇒ A)) ⇒ ((∀i:ℕn. (B i)) ⇒ A) ⇒ A)
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
guard: {T}, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
ge: i ≥ j , 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
less_than': less_than'(a;b), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtract: n - m, 
true: True, 
less_than: a < b, 
squash: ↓T
Lemmas referenced : 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_wf, 
subtype_rel_self, 
istype-nat, 
natrec_wf, 
nat_wf, 
subtype_rel_function, 
int_seg_properties, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
intformle_wf, 
itermConstant_wf, 
intformeq_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
subtract_wf, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__lt, 
istype-le, 
istype-less_than, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
natural_numberEquality, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
independent_functionElimination, 
sqequalRule, 
functionIsType, 
universeIsType, 
hypothesisEquality, 
applyEquality, 
universeEquality, 
inhabitedIsType, 
isectIsType, 
productElimination, 
lambdaEquality_alt, 
isectEquality, 
functionEquality, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
productIsType, 
addEquality, 
minusEquality, 
multiplyEquality, 
imageElimination
Latex:
\mforall{}[A:\mBbbP{}].  \mforall{}n:\mBbbN{}.  \mforall{}[B:\mBbbN{}n  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}i:\mBbbN{}n.  (((B  i)  {}\mRightarrow{}  A)  {}\mRightarrow{}  A))  {}\mRightarrow{}  ((\mforall{}i:\mBbbN{}n.  (B  i))  {}\mRightarrow{}  A)  {}\mRightarrow{}  A)
Date html generated:
2020_05_20-AM-08_05_00
Last ObjectModification:
2019_10_31-AM-10_48_54
Theory : general
Home
Index