Nuprl Lemma : gcd-exp

x,y:ℤ. ∀n:ℕ.  (gcd(x^n;y^n) gcd(x;y)^n)


Proof




Definitions occuring in Statement :  assoced: b exp: i^n gcd: gcd(a;b) nat: all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q gcd_p: GCD(a;b;y) and: P ∧ Q cand: c∧ B prop: exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q top: Top uimplies: supposing a sq_type: SQType(T) guard: {T} true: True squash: T subtype_rel: A ⊆B rev_implies:  Q nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A
Lemmas referenced :  divides-mul divides-add int_formula_prop_wf int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermMultiply_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__equal_int nat_properties iff_weakening_equal exp-of-mul add_functionality_wrt_eq true_wf squash_wf one-mul mul-commutes mul-swap mul-distributes int_subtype_base subtype_base_sq coprime_bezout_id coprime-exp equal_wf coprime_wf exists_wf gcd-property nat_wf divides_wf and_wf gcd_is_divisor_2 gcd_is_divisor_1 exp-divides gcd_sat_pred gcd_wf exp_wf2 gcd_unique
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis independent_functionElimination independent_pairFormation because_Cache productElimination intEquality sqequalRule lambdaEquality multiplyEquality equalityEquality equalityTransitivity equalitySymmetry applyEquality equalityUniverse levelHypothesis isect_memberEquality voidElimination voidEquality instantiate cumulativity independent_isectElimination natural_numberEquality imageElimination imageMemberEquality baseClosed universeEquality setElimination rename unionElimination dependent_pairFormation int_eqEquality computeAll inrFormation

Latex:
\mforall{}x,y:\mBbbZ{}.  \mforall{}n:\mBbbN{}.    (gcd(x\^{}n;y\^{}n)  \msim{}  gcd(x;y)\^{}n)



Date html generated: 2016_05_15-PM-04_50_22
Last ObjectModification: 2016_01_16-AM-11_27_17

Theory : general


Home Index