Nuprl Lemma : integer-sqrt-bin-search
∀x:ℕ. (∃r:{ℕ| (((r * r) ≤ x) ∧ x < (r + 1) * (r + 1))})
Proof
Definitions occuring in Statement :
nat: ℕ
,
less_than: a < b
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
sq_exists: ∃x:{A| B[x]}
,
and: P ∧ Q
,
multiply: n * m
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
nat: ℕ
,
decidable: Dec(P)
,
or: P ∨ Q
,
uall: ∀[x:A]. B[x]
,
less_than: a < b
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
top: Top
,
true: True
,
squash: ↓T
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
prop: ℙ
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
guard: {T}
,
cand: A c∧ B
,
le: A ≤ B
,
sq_exists: ∃x:{A| B[x]}
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
subtype_rel: A ⊆r B
,
int_upper: {i...}
,
int_seg: {i..j-}
,
nat_plus: ℕ+
,
exp: i^n
,
eq_int: (i =z j)
,
subtract: n - m
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
uiff: uiff(P;Q)
,
lelt: i ≤ j < k
,
rev_uimplies: rev_uimplies(P;Q)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
int_seg_properties,
int_seg_subtype_nat,
mul_preserves_le,
exp_preserves_le,
not_wf,
all_wf,
assert_of_lt_int,
assert_wf,
lelt_wf,
primrec-unroll,
int_term_value_add_lemma,
itermAdd_wf,
int_term_value_mul_lemma,
itermMultiply_wf,
multiply-is-int-iff,
primrec1_lemma,
iroot-property,
iroot_wf,
int_seg_wf,
lt_int_wf,
decidable__le,
binary-search_wf,
int_formula_prop_wf,
int_formula_prop_le_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
intformle_wf,
intformless_wf,
itermConstant_wf,
itermVar_wf,
intformeq_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
nat_properties,
and_wf,
le_wf,
false_wf,
int_subtype_base,
subtype_base_sq,
decidable__equal_int,
less_than_wf,
top_wf,
decidable__lt,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
introduction,
cut,
lemma_by_obid,
hypothesis,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
setElimination,
rename,
hypothesisEquality,
natural_numberEquality,
unionElimination,
sqequalRule,
because_Cache,
lessCases,
isect_memberFormation,
isectElimination,
sqequalAxiom,
isect_memberEquality,
independent_pairFormation,
voidElimination,
voidEquality,
imageMemberEquality,
baseClosed,
imageElimination,
productElimination,
independent_functionElimination,
instantiate,
cumulativity,
intEquality,
independent_isectElimination,
multiplyEquality,
equalityTransitivity,
equalitySymmetry,
addEquality,
dependent_set_memberEquality,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
computeAll,
applyEquality,
pointwiseFunctionality,
promote_hyp,
baseApply,
closedConclusion,
productEquality,
addLevel,
impliesFunctionality,
levelHypothesis,
andLevelFunctionality,
impliesLevelFunctionality,
setEquality
Latex:
\mforall{}x:\mBbbN{}. (\mexists{}r:\{\mBbbN{}| (((r * r) \mleq{} x) \mwedge{} x < (r + 1) * (r + 1))\})
Date html generated:
2016_05_15-PM-05_15_53
Last ObjectModification:
2016_01_16-AM-11_40_20
Theory : general
Home
Index