Nuprl Lemma : binary-search_wf
∀a:ℤ. ∀b:{a + 1...}. ∀f:{a..b + 1-} ⟶ 𝔹.
  binary-search(f;a;b) ∈ {x:{a..b-}| (¬↑(f x)) ∧ (↑(f (x + 1)))}  
  supposing ↓∃x:{a..b-}. ((∀y:{a..x + 1-}. (¬↑(f y))) ∧ (∀z:{x + 1..b + 1-}. (↑(f z))))
Proof
Definitions occuring in Statement : 
binary-search: binary-search(f;a;b), 
int_upper: {i...}, 
int_seg: {i..j-}, 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
squash: ↓T, 
and: P ∧ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
int_upper: {i...}, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
guard: {T}, 
so_apply: x[s], 
binary-search: binary-search(f;a;b), 
decidable: Dec(P), 
or: P ∨ Q, 
squash: ↓T, 
cand: A c∧ B, 
uiff: uiff(P;Q), 
int_nzero: ℤ-o, 
true: True, 
nequal: a ≠ b ∈ T , 
sq_type: SQType(T), 
subtype_rel: A ⊆r B, 
less_than: a < b, 
nat_plus: ℕ+, 
less_than': less_than'(a;b), 
has-value: (a)↓, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
le: A ≤ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
subtract: n - m
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
squash_wf, 
exists_wf, 
int_seg_wf, 
all_wf, 
not_wf, 
assert_wf, 
int_seg_properties, 
int_upper_properties, 
itermAdd_wf, 
itermSubtract_wf, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
lelt_wf, 
bool_wf, 
le_wf, 
subtract_wf, 
int_upper_wf, 
subtract-1-ge-0, 
decidable__equal_int, 
decidable__lt, 
intformnot_wf, 
int_formula_prop_not_lemma, 
decidable__le, 
nat_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
add-member-int_seg2, 
add-subtract-cancel, 
subtype_base_sq, 
int_subtype_base, 
nequal_wf, 
rem_bounds_1, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
mul_cancel_in_lt, 
div_rem_sum2, 
value-type-has-value, 
int-value-type, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
subtype_rel_function, 
int_seg_subtype, 
le_reflexive, 
add-is-int-iff, 
subtype_rel_self, 
subtype_rel_sets, 
subtype_rel_set, 
istype-false, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
zero-add, 
add-commutes, 
add_functionality_wrt_le, 
le-add-cancel2
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
productEquality, 
addEquality, 
applyEquality, 
functionExtensionality, 
Error :dependent_set_memberEquality_alt, 
productElimination, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
Error :isect_memberFormation_alt, 
Error :functionIsType, 
unionElimination, 
int_eqReduceTrueSq, 
int_eqReduceFalseSq, 
imageElimination, 
Error :productIsType, 
instantiate, 
cumulativity, 
intEquality, 
Error :equalityIsType4, 
multiplyEquality, 
remainderEquality, 
divideEquality, 
imageMemberEquality, 
baseClosed, 
Error :equalityIsType1, 
callbyvalueReduce, 
equalityElimination, 
promote_hyp, 
baseApply, 
closedConclusion, 
minusEquality, 
functionEquality, 
voidEquality, 
isect_memberEquality, 
lambdaEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
lambdaFormation
Latex:
\mforall{}a:\mBbbZ{}.  \mforall{}b:\{a  +  1...\}.  \mforall{}f:\{a..b  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbB{}.
    binary-search(f;a;b)  \mmember{}  \{x:\{a..b\msupminus{}\}|  (\mneg{}\muparrow{}(f  x))  \mwedge{}  (\muparrow{}(f  (x  +  1)))\}   
    supposing  \mdownarrow{}\mexists{}x:\{a..b\msupminus{}\}.  ((\mforall{}y:\{a..x  +  1\msupminus{}\}.  (\mneg{}\muparrow{}(f  y)))  \mwedge{}  (\mforall{}z:\{x  +  1..b  +  1\msupminus{}\}.  (\muparrow{}(f  z))))
Date html generated:
2019_06_20-PM-01_16_17
Last ObjectModification:
2018_10_03-PM-11_02_41
Theory : int_2
Home
Index