Nuprl Lemma : isl-prior-iff

[T:Type]. ∀f:ℕ ⟶ (T Top). ∀n:ℕ.  (↑isl(prior(n;f)) ⇐⇒ ∃k:ℕn. (↑isl(f k)))


Proof




Definitions occuring in Statement :  prior: prior(n;f) int_seg: {i..j-} nat: assert: b isl: isl(x) uall: [x:A]. B[x] top: Top all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] union: left right natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff prop: and: P ∧ Q iff: ⇐⇒ Q exists: x:A. B[x] uimplies: supposing a sq_type: SQType(T) guard: {T} true: True subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  prior-cases prior_wf nat_wf int_seg_wf unit_wf2 equal_wf top_wf and_wf isl_wf btrue_wf subtype_base_sq bool_wf bool_subtype_base assert_wf int_seg_subtype_nat false_wf true_wf exists_wf all_wf not_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_functionElimination cumulativity functionExtensionality applyEquality unionEquality productEquality natural_numberEquality setElimination rename unionElimination sqequalRule equalityTransitivity equalitySymmetry independent_functionElimination functionEquality universeEquality productElimination independent_pairFormation dependent_pairFormation dependent_set_memberEquality applyLambdaEquality instantiate independent_isectElimination lambdaEquality because_Cache inlEquality addEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}[T:Type].  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  (T  +  Top).  \mforall{}n:\mBbbN{}.    (\muparrow{}isl(prior(n;f))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}k:\mBbbN{}n.  (\muparrow{}isl(f  k)))



Date html generated: 2017_10_01-AM-09_12_14
Last ObjectModification: 2017_07_26-PM-04_47_58

Theory : general


Home Index