Nuprl Lemma : member_nth_tl
∀[T:Type]. ∀n:ℕ. ∀x:T. ∀L:T List.  ((x ∈ nth_tl(n;L)) ⇒ (x ∈ L))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l), 
nth_tl: nth_tl(n;as), 
list: T List, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat: ℕ, 
nth_tl: nth_tl(n;as), 
le_int: i ≤z j, 
lt_int: i <z j, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
subtype_rel: A ⊆r B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
guard: {T}, 
top: Top, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
or: P ∨ Q
Lemmas referenced : 
all_wf, 
list_wf, 
l_member_wf, 
nth_tl_wf, 
subtract_wf, 
set_wf, 
less_than_wf, 
primrec-wf2, 
nat_wf, 
list_induction, 
nth_tl_nil, 
nil_wf, 
le_int_wf, 
bool_wf, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
le_wf, 
lt_int_wf, 
bnot_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
equal_wf, 
cons_wf, 
reduce_tl_cons_lemma, 
cons_member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
rename, 
setElimination, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
functionEquality, 
natural_numberEquality, 
intEquality, 
universeEquality, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
equalityTransitivity, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
inrFormation
Latex:
\mforall{}[T:Type].  \mforall{}n:\mBbbN{}.  \mforall{}x:T.  \mforall{}L:T  List.    ((x  \mmember{}  nth\_tl(n;L))  {}\mRightarrow{}  (x  \mmember{}  L))
Date html generated:
2018_05_21-PM-06_30_01
Last ObjectModification:
2017_07_26-PM-04_50_20
Theory : general
Home
Index