Nuprl Lemma : member_nth_tl

[T:Type]. ∀n:ℕ. ∀x:T. ∀L:T List.  ((x ∈ nth_tl(n;L))  (x ∈ L))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) nth_tl: nth_tl(n;as) list: List nat: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] nat: nth_tl: nth_tl(n;as) le_int: i ≤j lt_int: i <j bnot: ¬bb ifthenelse: if then else fi  bfalse: ff btrue: tt subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a guard: {T} top: Top iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q
Lemmas referenced :  all_wf list_wf l_member_wf nth_tl_wf subtract_wf set_wf less_than_wf primrec-wf2 nat_wf list_induction nth_tl_nil nil_wf le_int_wf bool_wf equal-wf-base int_subtype_base assert_wf le_wf lt_int_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int equal_wf cons_wf reduce_tl_cons_lemma cons_member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin rename setElimination introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality sqequalRule lambdaEquality hypothesis functionEquality natural_numberEquality intEquality universeEquality because_Cache independent_functionElimination dependent_functionElimination hyp_replacement equalitySymmetry applyLambdaEquality baseApply closedConclusion baseClosed applyEquality equalityTransitivity unionElimination equalityElimination productElimination independent_isectElimination isect_memberEquality voidElimination voidEquality inrFormation

Latex:
\mforall{}[T:Type].  \mforall{}n:\mBbbN{}.  \mforall{}x:T.  \mforall{}L:T  List.    ((x  \mmember{}  nth\_tl(n;L))  {}\mRightarrow{}  (x  \mmember{}  L))



Date html generated: 2018_05_21-PM-06_30_01
Last ObjectModification: 2017_07_26-PM-04_50_20

Theory : general


Home Index