Nuprl Lemma : power-type-length

T:Type. ∀k:ℕ. ∀x:(T^k).  (||x|| k ∈ ℤ)


Proof




Definitions occuring in Statement :  power-type: (T^k) length: ||as|| nat: all: x:A. B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: power-type: (T^k) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt unit: Unit length: ||as|| list_ind: list_ind decidable: Dec(P) or: P ∨ Q bool: 𝔹 it: subtype_rel: A ⊆B uiff: uiff(P;Q) bfalse: ff iff: ⇐⇒ Q rev_implies:  Q cons: [a b]
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf power-type_wf unit_wf2 le_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma eq_int_wf bool_wf uiff_transitivity equal-wf-base int_subtype_base assert_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf nat_wf length_of_cons_lemma decidable__equal_int itermAdd_wf int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality cumulativity equalityElimination dependent_set_memberEquality unionElimination baseApply closedConclusion baseClosed applyEquality equalityTransitivity equalitySymmetry productElimination because_Cache impliesFunctionality universeEquality

Latex:
\mforall{}T:Type.  \mforall{}k:\mBbbN{}.  \mforall{}x:(T\^{}k).    (||x||  =  k)



Date html generated: 2018_05_21-PM-08_14_06
Last ObjectModification: 2017_07_26-PM-05_49_04

Theory : general


Home Index