Nuprl Lemma : remove_leading_eq_nil

[T:Type]. ∀[L:T List]. ∀[P:T ⟶ 𝔹].  uiff(remove_leading(x.P[x];L) [] ∈ (T List);(∀x∈L.↑P[x]))


Proof




Definitions occuring in Statement :  remove_leading: remove_leading(a.P[a];L) l_all: (∀x∈L.P[x]) nil: [] list: List assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B guard: {T} top: Top implies:  Q int_seg: {i..j-} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A less_than: a < b squash: T l_all: (∀x∈L.P[x]) rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  equal-wf-T-base list_wf remove_leading_wf assert_wf null_wf3 subtype_rel_list top_wf subtype_rel_set not_wf hd_wf uiff_wf l_all_wf2 l_member_wf select_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf bool_wf assert_witness iff_weakening_uiff assert_of_null null_remove_leading
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation hypothesis cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality because_Cache baseClosed equalityTransitivity equalitySymmetry independent_isectElimination isect_memberEquality voidElimination voidEquality instantiate functionEquality universeEquality setElimination rename setEquality natural_numberEquality productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality computeAll imageElimination independent_pairEquality independent_functionElimination axiomEquality addLevel

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].    uiff(remove\_leading(x.P[x];L)  =  [];(\mforall{}x\mmember{}L.\muparrow{}P[x]))



Date html generated: 2018_05_21-PM-06_44_16
Last ObjectModification: 2017_07_26-PM-04_54_56

Theory : general


Home Index