Nuprl Lemma : remove_leading_eq_nil
∀[T:Type]. ∀[L:T List]. ∀[P:T ⟶ 𝔹].  uiff(remove_leading(x.P[x];L) = [] ∈ (T List);(∀x∈L.↑P[x]))
Proof
Definitions occuring in Statement : 
remove_leading: remove_leading(a.P[a];L)
, 
l_all: (∀x∈L.P[x])
, 
nil: []
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
top: Top
, 
implies: P 
⇒ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
less_than: a < b
, 
squash: ↓T
, 
l_all: (∀x∈L.P[x])
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
equal-wf-T-base, 
list_wf, 
remove_leading_wf, 
assert_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
subtype_rel_set, 
not_wf, 
hd_wf, 
uiff_wf, 
l_all_wf2, 
l_member_wf, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
bool_wf, 
assert_witness, 
iff_weakening_uiff, 
assert_of_null, 
null_remove_leading
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
hypothesis, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
because_Cache, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
instantiate, 
functionEquality, 
universeEquality, 
setElimination, 
rename, 
setEquality, 
natural_numberEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
imageElimination, 
independent_pairEquality, 
independent_functionElimination, 
axiomEquality, 
addLevel
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].    uiff(remove\_leading(x.P[x];L)  =  [];(\mforall{}x\mmember{}L.\muparrow{}P[x]))
Date html generated:
2018_05_21-PM-06_44_16
Last ObjectModification:
2017_07_26-PM-04_54_56
Theory : general
Home
Index