Nuprl Lemma : null_remove_leading

[T:Type]. ∀[L:T List]. ∀[P:T ⟶ 𝔹].  uiff(↑null(remove_leading(x.P[x];L));(∀x∈L.↑P[x]))


Proof




Definitions occuring in Statement :  remove_leading: remove_leading(a.P[a];L) l_all: (∀x∈L.P[x]) null: null(as) list: List assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q subtype_rel: A ⊆B uimplies: supposing a top: Top prop: or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt not: ¬A true: True false: False cons: [a b] bfalse: ff guard: {T} nat: le: A ≤ B and: P ∧ Q decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m less_than': less_than'(a;b) listp: List+ sq_type: SQType(T) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) less_than: a < b squash: T
Lemmas referenced :  remove_leading_property remove_leading_wf set_wf list_wf not_wf assert_wf null_wf3 subtype_rel_list top_wf hd_wf listp_properties list-cases length_of_nil_lemma null_nil_lemma product_subtype_list length_of_cons_lemma null_cons_lemma length_wf_nat nat_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel equal_wf less_than_wf length_wf append-nil l_all_iff l_member_wf assert_elim subtype_base_sq bool_wf bool_subtype_base l_all_wf2 assert_witness select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf intformless_wf int_formula_prop_less_lemma int_seg_wf true_wf append_wf nil_wf l_all_append cons_wf l_all_cons reduce_hd_cons_lemma subtype_rel_set
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination productElimination cumulativity sqequalRule lambdaEquality applyEquality functionExtensionality functionEquality independent_isectElimination isect_memberEquality voidElimination voidEquality because_Cache unionElimination independent_functionElimination natural_numberEquality promote_hyp hypothesis_subsumption lambdaFormation setElimination rename addEquality independent_pairFormation intEquality minusEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality setEquality addLevel levelHypothesis instantiate hyp_replacement applyLambdaEquality dependent_pairFormation int_eqEquality computeAll imageElimination axiomEquality independent_pairEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].    uiff(\muparrow{}null(remove\_leading(x.P[x];L));(\mforall{}x\mmember{}L.\muparrow{}P[x]))



Date html generated: 2018_05_21-PM-06_44_10
Last ObjectModification: 2017_07_26-PM-04_54_52

Theory : general


Home Index