Nuprl Lemma : remove_leading_property
∀[T:Type]. ∀L:T List. ∀P:T ⟶ 𝔹.  ∃xs:{x:T| ↑P[x]}  List. (L = (xs @ remove_leading(x.P[x];L)) ∈ (T List))
Proof
Definitions occuring in Statement : 
remove_leading: remove_leading(a.P[a];L)
, 
append: as @ bs
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
top: Top
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
not: ¬A
, 
true: True
, 
false: False
, 
cons: [a / b]
, 
bfalse: ff
, 
guard: {T}
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
listp: A List+
, 
remove_leading: remove_leading(a.P[a];L)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
exists: ∃x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
append: as @ bs
, 
squash: ↓T
Lemmas referenced : 
list_induction, 
all_wf, 
bool_wf, 
exists_wf, 
list_wf, 
assert_wf, 
equal_wf, 
append_wf, 
subtype_rel_list, 
remove_leading_wf, 
not_wf, 
null_wf3, 
top_wf, 
hd_wf, 
listp_properties, 
list-cases, 
length_of_nil_lemma, 
null_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
null_cons_lemma, 
length_wf_nat, 
nat_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
length_wf, 
list_ind_nil_lemma, 
nil_wf, 
append_back_nil, 
equal-wf-base-T, 
list_ind_cons_lemma, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
cons_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
nil-append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
hypothesis, 
setEquality, 
because_Cache, 
applyEquality, 
functionExtensionality, 
independent_isectElimination, 
setElimination, 
rename, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
unionElimination, 
independent_functionElimination, 
natural_numberEquality, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
addEquality, 
independent_pairFormation, 
intEquality, 
minusEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
universeEquality, 
dependent_pairFormation, 
baseClosed, 
equalityElimination, 
instantiate, 
imageElimination, 
imageMemberEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.    \mexists{}xs:\{x:T|  \muparrow{}P[x]\}    List.  (L  =  (xs  @  remove\_leading(x.P[x];L)))
Date html generated:
2018_05_21-PM-06_43_31
Last ObjectModification:
2017_07_26-PM-04_54_41
Theory : general
Home
Index