Nuprl Lemma : remove_leading_property

[T:Type]. ∀L:T List. ∀P:T ⟶ 𝔹.  ∃xs:{x:T| ↑P[x]}  List. (L (xs remove_leading(x.P[x];L)) ∈ (T List))


Proof




Definitions occuring in Statement :  remove_leading: remove_leading(a.P[a];L) append: as bs list: List assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: subtype_rel: A ⊆B uimplies: supposing a implies:  Q top: Top or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt not: ¬A true: True false: False cons: [a b] bfalse: ff guard: {T} nat: le: A ≤ B and: P ∧ Q decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m less_than': less_than'(a;b) listp: List+ remove_leading: remove_leading(a.P[a];L) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] exists: x:A. B[x] bool: 𝔹 unit: Unit it: sq_type: SQType(T) bnot: ¬bb append: as bs squash: T
Lemmas referenced :  list_induction all_wf bool_wf exists_wf list_wf assert_wf equal_wf append_wf subtype_rel_list remove_leading_wf not_wf null_wf3 top_wf hd_wf listp_properties list-cases length_of_nil_lemma null_nil_lemma product_subtype_list length_of_cons_lemma null_cons_lemma length_wf_nat nat_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf length_wf list_ind_nil_lemma nil_wf append_back_nil equal-wf-base-T list_ind_cons_lemma eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot cons_wf squash_wf true_wf iff_weakening_equal nil-append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality cumulativity hypothesis setEquality because_Cache applyEquality functionExtensionality independent_isectElimination setElimination rename isect_memberEquality voidElimination voidEquality dependent_functionElimination unionElimination independent_functionElimination natural_numberEquality promote_hyp hypothesis_subsumption productElimination addEquality independent_pairFormation intEquality minusEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality universeEquality dependent_pairFormation baseClosed equalityElimination instantiate imageElimination imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.    \mexists{}xs:\{x:T|  \muparrow{}P[x]\}    List.  (L  =  (xs  @  remove\_leading(x.P[x];L)))



Date html generated: 2018_05_21-PM-06_43_31
Last ObjectModification: 2017_07_26-PM-04_54_41

Theory : general


Home Index