Nuprl Lemma : remove_leading_wf

[T:Type]. ∀[L:T List]. ∀[P:T ⟶ 𝔹].  (remove_leading(x.P[x];L) ∈ {L:T List| (¬↑null(L))  (¬↑P[hd(L)])} )


Proof




Definitions occuring in Statement :  remove_leading: remove_leading(a.P[a];L) hd: hd(l) null: null(as) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] not: ¬A implies:  Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) remove_leading: remove_leading(a.P[a];L) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] assert: b ifthenelse: if then else fi  btrue: tt true: True bfalse: ff sq_stable: SqStable(P) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m le: A ≤ B bool: 𝔹 unit: Unit bnot: ¬bb
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf bool_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int list_wf list_ind_nil_lemma nil_wf subtype_rel_list null_nil_lemma null_cons_lemma assert_wf hd_wf length_of_nil_lemma length_of_cons_lemma length_wf_nat sq_stable__le not_wf null_wf3 top_wf false_wf not-ge-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates add-commutes add_functionality_wrt_le add-zero le-add-cancel2 list_ind_cons_lemma eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot reduce_hd_cons_lemma length_cons_ge_one cons_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination universeEquality functionExtensionality imageMemberEquality minusEquality equalityElimination

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].
    (remove\_leading(x.P[x];L)  \mmember{}  \{L:T  List|  (\mneg{}\muparrow{}null(L))  {}\mRightarrow{}  (\mneg{}\muparrow{}P[hd(L)])\}  )



Date html generated: 2018_05_21-PM-06_43_01
Last ObjectModification: 2017_07_26-PM-04_54_36

Theory : general


Home Index