Nuprl Lemma : flattice-order-meet
∀X:Type. ∀a1,b1,as,bs:(X + X) List List.
  (flattice-order(X;a1;b1) ⇒ flattice-order(X;as;bs) ⇒ flattice-order(X;free-dl-meet(a1;as);free-dl-meet(b1;bs)))
Proof
Definitions occuring in Statement : 
flattice-order: flattice-order(X;as;bs), 
free-dl-meet: free-dl-meet(as;bs), 
list: T List, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
union: left + right, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
flattice-order: flattice-order(X;as;bs), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
cand: A c∧ B, 
guard: {T}, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
l_subset: l_subset(T;as;bs)
Lemmas referenced : 
l_all_iff, 
list_wf, 
l_member_wf, 
or_wf, 
l_exists_wf, 
equal_wf, 
flip-union_wf, 
l_contains_wf, 
free-dl-meet_wf_list, 
l_exists_iff, 
exists_wf, 
append_wf, 
member-free-dl-meet, 
all_wf, 
flattice-order_wf, 
length_wf_nat, 
nat_wf, 
member_append, 
l_exists_append, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
l_subset-l_contains, 
l_subset_wf, 
l_subset_append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
setEquality, 
productElimination, 
independent_functionElimination, 
allFunctionality, 
addLevel, 
orFunctionality, 
productEquality, 
promote_hyp, 
impliesFunctionality, 
existsFunctionality, 
independent_pairFormation, 
andLevelFunctionality, 
existsLevelFunctionality, 
functionEquality, 
universeEquality, 
unionElimination, 
inlFormation, 
dependent_set_memberEquality, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
inrFormation, 
applyEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}X:Type.  \mforall{}a1,b1,as,bs:(X  +  X)  List  List.
    (flattice-order(X;a1;b1)
    {}\mRightarrow{}  flattice-order(X;as;bs)
    {}\mRightarrow{}  flattice-order(X;free-dl-meet(a1;as);free-dl-meet(b1;bs)))
Date html generated:
2020_05_20-AM-08_59_33
Last ObjectModification:
2017_07_28-AM-09_18_16
Theory : lattices
Home
Index