Nuprl Lemma : mk-bounded-lattice_wf

[T:Type]. ∀[m,j:T ⟶ T ⟶ T]. ∀[z,o:T].
  mk-bounded-lattice(T;m;j;z;o) ∈ BoundedLattice 
  supposing (∀[a,b:T].  (m[a;b] m[b;a] ∈ T))
  ∧ (∀[a,b:T].  (j[a;b] j[b;a] ∈ T))
  ∧ (∀[a,b,c:T].  (m[a;m[b;c]] m[m[a;b];c] ∈ T))
  ∧ (∀[a,b,c:T].  (j[a;j[b;c]] j[j[a;b];c] ∈ T))
  ∧ (∀[a,b:T].  (j[a;m[a;b]] a ∈ T))
  ∧ (∀[a,b:T].  (m[a;j[a;b]] a ∈ T))
  ∧ (∀[a:T]. (m[a;o] a ∈ T))
  ∧ (∀[a:T]. (j[a;z] a ∈ T))


Proof




Definitions occuring in Statement :  bdd-lattice: BoundedLattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] and: P ∧ Q member: t ∈ T function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) bdd-lattice: BoundedLattice cand: c∧ B subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] bounded-lattice-structure: BoundedLatticeStructure record+: record+ record-update: r[x := v] record: record(x.T[x]) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} record-select: r.x top: Top eq_atom: =a y bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q lattice-axioms: lattice-axioms(l) lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) bounded-lattice-axioms: bounded-lattice-axioms(l) lattice-1: 1 lattice-0: 0
Lemmas referenced :  lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf eq_atom_wf uiff_transitivity equal-wf-base bool_wf assert_wf atom_subtype_base eqtt_to_assert assert_of_eq_atom subtype_base_sq rec_select_update_lemma iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin dependent_set_memberEquality independent_pairFormation hypothesis productEquality extract_by_obid isectElimination hypothesisEquality applyEquality sqequalRule axiomEquality equalityTransitivity equalitySymmetry cumulativity lambdaEquality because_Cache functionExtensionality isect_memberEquality functionEquality universeEquality dependentIntersection_memberEquality tokenEquality lambdaFormation unionElimination equalityElimination baseApply closedConclusion baseClosed atomEquality independent_functionElimination independent_isectElimination instantiate dependent_functionElimination voidElimination voidEquality impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[m,j:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[z,o:T].
    mk-bounded-lattice(T;m;j;z;o)  \mmember{}  BoundedLattice 
    supposing  (\mforall{}[a,b:T].    (m[a;b]  =  m[b;a]))
    \mwedge{}  (\mforall{}[a,b:T].    (j[a;b]  =  j[b;a]))
    \mwedge{}  (\mforall{}[a,b,c:T].    (m[a;m[b;c]]  =  m[m[a;b];c]))
    \mwedge{}  (\mforall{}[a,b,c:T].    (j[a;j[b;c]]  =  j[j[a;b];c]))
    \mwedge{}  (\mforall{}[a,b:T].    (j[a;m[a;b]]  =  a))
    \mwedge{}  (\mforall{}[a,b:T].    (m[a;j[a;b]]  =  a))
    \mwedge{}  (\mforall{}[a:T].  (m[a;o]  =  a))
    \mwedge{}  (\mforall{}[a:T].  (j[a;z]  =  a))



Date html generated: 2020_05_20-AM-08_24_21
Last ObjectModification: 2017_07_28-AM-09_12_37

Theory : lattices


Home Index