Nuprl Lemma : mk-general-bounded-dist-lattice_wf
∀[T:Type]. ∀[m,j:T ⟶ T ⟶ T]. ∀[z,o:T]. ∀[E:T ⟶ T ⟶ ℙ].
  mk-general-bounded-dist-lattice(T;m;j;z;o;E) ∈ GeneralBoundedDistributiveLattice 
  supposing EquivRel(T;x,y.E x y)
  ∧ (∀[a,b:T].  (E m[a;b] m[b;a]))
  ∧ (∀[a,b:T].  (E j[a;b] j[b;a]))
  ∧ (∀[a,b,c:T].  (E m[a;m[b;c]] m[m[a;b];c]))
  ∧ (∀[a,b,c:T].  (E j[a;j[b;c]] j[j[a;b];c]))
  ∧ (∀[a,b:T].  (E j[a;m[a;b]] a))
  ∧ (∀[a,b:T].  (E m[a;j[a;b]] a))
  ∧ (∀[a:T]. (E m[a;o] a))
  ∧ (∀[a:T]. (E j[a;z] a))
  ∧ (∀[a,b,c:T].  (E m[a;j[b;c]] j[m[a;b];m[a;c]]))
Proof
Definitions occuring in Statement : 
mk-general-bounded-dist-lattice: mk-general-bounded-dist-lattice(T;m;j;z;o;E)
, 
general-bounded-distributive-lattice: GeneralBoundedDistributiveLattice
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
mk-general-bounded-dist-lattice: mk-general-bounded-dist-lattice(T;m;j;z;o;E)
, 
general-bounded-distributive-lattice: GeneralBoundedDistributiveLattice
, 
mk-general-bounded-lattice: mk-general-bounded-lattice(T;m;j;z;o;E)
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
general-bounded-lattice-structure: GeneralBoundedLatticeStructure
, 
record+: record+, 
record-update: r[x := v]
, 
record: record(x.T[x])
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
sq_type: SQType(T)
, 
guard: {T}
, 
record-select: r.x
, 
top: Top
, 
eq_atom: x =a y
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
lattice-meet: a ∧ b
, 
lattice-join: a ∨ b
, 
lattice-point: Point(l)
, 
general-lattice-axioms: general-lattice-axioms(l)
, 
lattice-equiv: a ≡ b
, 
lattice-1: 1
, 
lattice-0: 0
, 
cand: A c∧ B
Lemmas referenced : 
equiv_rel_wf, 
uall_wf, 
eq_atom_wf, 
uiff_transitivity, 
equal-wf-base, 
bool_wf, 
assert_wf, 
atom_subtype_base, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
rec_select_update_lemma, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
general-lattice-axioms_wf, 
lattice-point_wf, 
bounded-lattice-structure-subtype, 
general-bounded-lattice-structure-subtype, 
subtype_rel_transitivity, 
general-bounded-lattice-structure_wf, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-equiv_wf, 
lattice-meet_wf, 
lattice-join_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_set_memberEquality, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
because_Cache, 
isect_memberEquality, 
functionEquality, 
universeEquality, 
dependentIntersection_memberEquality, 
tokenEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
atomEquality, 
independent_functionElimination, 
independent_isectElimination, 
instantiate, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
impliesFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[m,j:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[z,o:T].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    mk-general-bounded-dist-lattice(T;m;j;z;o;E)  \mmember{}  GeneralBoundedDistributiveLattice 
    supposing  EquivRel(T;x,y.E  x  y)
    \mwedge{}  (\mforall{}[a,b:T].    (E  m[a;b]  m[b;a]))
    \mwedge{}  (\mforall{}[a,b:T].    (E  j[a;b]  j[b;a]))
    \mwedge{}  (\mforall{}[a,b,c:T].    (E  m[a;m[b;c]]  m[m[a;b];c]))
    \mwedge{}  (\mforall{}[a,b,c:T].    (E  j[a;j[b;c]]  j[j[a;b];c]))
    \mwedge{}  (\mforall{}[a,b:T].    (E  j[a;m[a;b]]  a))
    \mwedge{}  (\mforall{}[a,b:T].    (E  m[a;j[a;b]]  a))
    \mwedge{}  (\mforall{}[a:T].  (E  m[a;o]  a))
    \mwedge{}  (\mforall{}[a:T].  (E  j[a;z]  a))
    \mwedge{}  (\mforall{}[a,b,c:T].    (E  m[a;j[b;c]]  j[m[a;b];m[a;c]]))
Date html generated:
2020_05_20-AM-08_58_41
Last ObjectModification:
2017_07_28-AM-09_18_03
Theory : lattices
Home
Index