Nuprl Lemma : interleaving_as_filter
∀[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L,L1,L2:T List].
  ({(L2 = filter(P;L) ∈ (T List)) ∧ (L1 = filter(λx.(¬b(P x));L) ∈ (T List))}) supposing 
     ((∀x∈L1.¬↑(P x)) and 
     (∀x∈L2.↑(P x)) and 
     interleaving(T;L1;L2;L))
Proof
Definitions occuring in Statement : 
interleaving: interleaving(T;L1;L2;L)
, 
l_all: (∀x∈L.P[x])
, 
filter: filter(P;l)
, 
list: T List
, 
bnot: ¬bb
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
not: ¬A
, 
and: P ∧ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
l_all_wf, 
not_wf, 
assert_wf, 
l_member_wf, 
interleaving_wf, 
list_wf, 
bool_wf, 
filter_interleaving, 
filter_trivial, 
filter_is_nil, 
nil_interleaving, 
filter_wf5, 
subtype_rel_dep_function, 
subtype_rel_self, 
set_wf, 
bnot_wf, 
assert_of_bnot, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
not_functionality_wrt_uiff, 
false_wf, 
nil_interleaving2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
independent_isectElimination, 
lambdaFormation, 
functionExtensionality, 
cumulativity, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
imageElimination
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L,L1,L2:T  List].
    (\{(L2  =  filter(P;L))  \mwedge{}  (L1  =  filter(\mlambda{}x.(\mneg{}\msubb{}(P  x));L))\})  supposing 
          ((\mforall{}x\mmember{}L1.\mneg{}\muparrow{}(P  x))  and 
          (\mforall{}x\mmember{}L2.\muparrow{}(P  x))  and 
          interleaving(T;L1;L2;L))
Date html generated:
2019_10_15-AM-10_56_47
Last ObjectModification:
2018_09_17-PM-06_33_10
Theory : list!
Home
Index