Nuprl Lemma : filter_interleaving

[T:Type]
  ∀P:T ⟶ 𝔹. ∀L,L1,L2:T List.  (interleaving(T;L1;L2;L)  interleaving(T;filter(P;L1);filter(P;L2);filter(P;L)))


Proof




Definitions occuring in Statement :  interleaving: interleaving(T;L1;L2;L) filter: filter(P;l) list: List bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q top: Top filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind nil: [] it: not: ¬A false: False rev_implies:  Q or: P ∨ Q cand: c∧ B le: A ≤ B less_than': less_than'(a;b) select: L[n] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] less_than: a < b squash: T cons: [a b] bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] colength: colength(L) guard: {T} decidable: Dec(P) sq_type: SQType(T)
Lemmas referenced :  list_induction all_wf list_wf interleaving_wf filter_wf5 subtype_rel_dep_function bool_wf l_member_wf subtype_rel_self set_wf interleaving_of_nil filter_nil_lemma nil_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse and_wf equal_wf null_wf btrue_neq_bfalse nil_interleaving interleaving_of_cons cons_wf less_than_wf length_wf select_wf false_wf tl_wf length_of_nil_lemma stuck-spread base_wf reduce_tl_nil_lemma length_of_cons_lemma reduce_tl_cons_lemma cons_interleaving equal-wf-T-base assert_wf bnot_wf not_wf filter_cons_lemma eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot cons_interleaving2 nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf nat_wf colength_wf_list int_subtype_base list-cases product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base decidable__equal_int member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis functionEquality applyEquality because_Cache setEquality independent_isectElimination setElimination rename independent_functionElimination dependent_functionElimination universeEquality productElimination isect_memberEquality voidElimination voidEquality hyp_replacement equalitySymmetry applyLambdaEquality dependent_set_memberEquality independent_pairFormation equalityTransitivity unionElimination natural_numberEquality cumulativity baseClosed imageElimination addEquality equalityElimination intWeakElimination approximateComputation dependent_pairFormation int_eqEquality intEquality axiomEquality promote_hyp hypothesis_subsumption instantiate

Latex:
\mforall{}[T:Type]
    \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L,L1,L2:T  List.
        (interleaving(T;L1;L2;L)  {}\mRightarrow{}  interleaving(T;filter(P;L1);filter(P;L2);filter(P;L)))



Date html generated: 2019_10_15-AM-10_56_43
Last ObjectModification: 2018_09_17-PM-06_39_19

Theory : list!


Home Index