Nuprl Lemma : filter_interleaving
∀[T:Type]
  ∀P:T ⟶ 𝔹. ∀L,L1,L2:T List.  (interleaving(T;L1;L2;L) 
⇒ interleaving(T;filter(P;L1);filter(P;L2);filter(P;L)))
Proof
Definitions occuring in Statement : 
interleaving: interleaving(T;L1;L2;L)
, 
filter: filter(P;l)
, 
list: T List
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
top: Top
, 
filter: filter(P;l)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
not: ¬A
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
select: L[n]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
less_than: a < b
, 
squash: ↓T
, 
cons: [a / b]
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
nat: ℕ
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
colength: colength(L)
, 
guard: {T}
, 
decidable: Dec(P)
, 
sq_type: SQType(T)
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
interleaving_wf, 
filter_wf5, 
subtype_rel_dep_function, 
bool_wf, 
l_member_wf, 
subtype_rel_self, 
set_wf, 
interleaving_of_nil, 
filter_nil_lemma, 
nil_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
and_wf, 
equal_wf, 
null_wf, 
btrue_neq_bfalse, 
nil_interleaving, 
interleaving_of_cons, 
cons_wf, 
less_than_wf, 
length_wf, 
select_wf, 
false_wf, 
tl_wf, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
reduce_tl_nil_lemma, 
length_of_cons_lemma, 
reduce_tl_cons_lemma, 
cons_interleaving, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
filter_cons_lemma, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
cons_interleaving2, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
nat_wf, 
colength_wf_list, 
int_subtype_base, 
list-cases, 
product_subtype_list, 
spread_cons_lemma, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
le_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_base_sq, 
set_subtype_base, 
decidable__equal_int, 
member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
functionEquality, 
applyEquality, 
because_Cache, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
independent_functionElimination, 
dependent_functionElimination, 
universeEquality, 
productElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
equalityTransitivity, 
unionElimination, 
natural_numberEquality, 
cumulativity, 
baseClosed, 
imageElimination, 
addEquality, 
equalityElimination, 
intWeakElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
axiomEquality, 
promote_hyp, 
hypothesis_subsumption, 
instantiate
Latex:
\mforall{}[T:Type]
    \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L,L1,L2:T  List.
        (interleaving(T;L1;L2;L)  {}\mRightarrow{}  interleaving(T;filter(P;L1);filter(P;L2);filter(P;L)))
Date html generated:
2019_10_15-AM-10_56_43
Last ObjectModification:
2018_09_17-PM-06_39_19
Theory : list!
Home
Index