Nuprl Lemma : interleaving_of_cons
∀[T:Type]
  ∀x:T. ∀L,L1,L2:T List.
    (interleaving(T;L1;L2;[x / L])
    
⇐⇒ (0 < ||L1|| c∧ ((L1[0] = x ∈ T) ∧ interleaving(T;tl(L1);L2;L)))
        ∨ (0 < ||L2|| c∧ ((L2[0] = x ∈ T) ∧ interleaving(T;L1;tl(L2);L))))
Proof
Definitions occuring in Statement : 
interleaving: interleaving(T;L1;L2;L)
, 
select: L[n]
, 
length: ||as||
, 
tl: tl(l)
, 
cons: [a / b]
, 
list: T List
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
or: P ∨ Q
, 
decidable: Dec(P)
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
cand: A c∧ B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
guard: {T}
, 
true: True
, 
squash: ↓T
, 
less_than: a < b
, 
nat_plus: ℕ+
, 
cons: [a / b]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
disjoint_sublists: disjoint_sublists(T;L1;L2;L)
, 
interleaving: interleaving(T;L1;L2;L)
, 
subtype_rel: A ⊆r B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
inject: Inj(A;B;f)
, 
unit: Unit
, 
bool: 𝔹
, 
sq_type: SQType(T)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
subtract: n - m
, 
increasing: increasing(f;k)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
colength: colength(L)
Lemmas referenced : 
istype-universe, 
list_wf, 
null_wf, 
decidable__assert, 
assert_of_null, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
reduce_tl_nil_lemma, 
iff_wf, 
interleaving_wf, 
cons_wf, 
or_wf, 
less_than_wf, 
length_wf, 
equal_wf, 
select_wf, 
false_wf, 
tl_wf, 
nil_wf, 
equal-wf-base-T, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
add-is-int-iff, 
decidable__lt, 
nat_plus_properties, 
nat_plus_wf, 
length_wf_nat, 
add_nat_plus, 
reduce_tl_cons_lemma, 
length_of_cons_lemma, 
nil_interleaving, 
nat_wf, 
list_induction, 
istype-false, 
istype-int, 
istype-void, 
nil_interleaving2, 
not_wf, 
assert_wf, 
null_nil_lemma, 
true_wf, 
null_cons_lemma, 
iff_weakening_uiff, 
non_nil_length, 
equal-wf-T-base, 
not_functionality_wrt_uiff, 
int_subtype_base, 
lelt_wf, 
set_subtype_base, 
le_wf, 
decidable__equal_int, 
injection_le, 
int_seg_wf, 
assert_of_le_int, 
bnot_of_lt_int, 
assert_functionality_wrt_uiff, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
uiff_transitivity, 
bnot_wf, 
le_int_wf, 
bool_wf, 
lt_int_wf, 
subtype_base_sq, 
int_term_value_subtract_lemma, 
int_formula_prop_le_lemma, 
itermSubtract_wf, 
intformle_wf, 
decidable__le, 
nat_properties, 
int_seg_properties, 
non_neg_length, 
subtract_wf, 
increasing_implies, 
increasing_inj, 
increasing_implies_le, 
istype-less_than, 
istype-le, 
le-add-cancel, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
add-commutes, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-lt-2, 
product_subtype_list, 
list-cases, 
select-cons-hd, 
increasing_wf, 
add-member-int_seg2, 
length_tl, 
subtract_nat_wf, 
iff_weakening_equal, 
subtype_rel_self, 
select_cons_tl, 
squash_wf, 
select_tl, 
length_zero, 
spread_cons_lemma, 
subtract-1-ge-0, 
colength_wf_list, 
colength-cons-not-zero, 
istype-base, 
ge_wf, 
cons_interleaving, 
cons_interleaving2
Rules used in proof : 
universeEquality, 
universeIsType, 
inhabitedIsType, 
unionElimination, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
baseClosed, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
cumulativity, 
because_Cache, 
productEquality, 
natural_numberEquality, 
independent_pairFormation, 
equalityTransitivity, 
imageElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
approximateComputation, 
closedConclusion, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
rename, 
setElimination, 
imageMemberEquality, 
dependent_set_memberEquality, 
independent_functionElimination, 
inrFormation, 
functionEquality, 
addEquality, 
productIsType, 
equalityIsType1, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
dependent_set_memberEquality_alt, 
isect_memberEquality_alt, 
inlFormation_alt, 
unionIsType, 
equalityIsType3, 
inrFormation_alt, 
equalityIsType4, 
applyEquality, 
equalityElimination, 
instantiate, 
functionExtensionality, 
sqequalBase, 
equalityIstype, 
Error :memTop, 
functionIsType, 
inlFormation, 
minusEquality, 
hypothesis_subsumption, 
functionIsTypeImplies, 
axiomEquality, 
intWeakElimination
Latex:
\mforall{}[T:Type]
    \mforall{}x:T.  \mforall{}L,L1,L2:T  List.
        (interleaving(T;L1;L2;[x  /  L])
        \mLeftarrow{}{}\mRightarrow{}  (0  <  ||L1||  c\mwedge{}  ((L1[0]  =  x)  \mwedge{}  interleaving(T;tl(L1);L2;L)))
                \mvee{}  (0  <  ||L2||  c\mwedge{}  ((L2[0]  =  x)  \mwedge{}  interleaving(T;L1;tl(L2);L))))
Date html generated:
2020_05_20-AM-07_48_41
Last ObjectModification:
2020_04_06-PM-06_47_41
Theory : list!
Home
Index