Nuprl Lemma : swap_swap

[T:Type]. ∀[L1:T List]. ∀[i,j:ℕ||L1||].  (swap(swap(L1;i;j);i;j) L1 ∈ (T List))


Proof




Definitions occuring in Statement :  swap: swap(L;i;j) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q guard: {T} all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: le: A ≤ B less_than: a < b nat: cand: c∧ B subtype_rel: A ⊆B ge: i ≥  true: True squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  swap_length swap_wf int_seg_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf lelt_wf list_extensionality less_than_wf nat_wf int_seg_wf length_wf list_wf zero-le-nat nat_properties flip_wf length_wf_nat select_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma equal_wf squash_wf le_wf flip_twice iff_weakening_equal true_wf swap_select
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache cumulativity hypothesis setElimination rename dependent_set_memberEquality productElimination independent_pairFormation natural_numberEquality equalityTransitivity equalitySymmetry dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll lambdaFormation axiomEquality universeEquality applyEquality imageElimination productEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[L1:T  List].  \mforall{}[i,j:\mBbbN{}||L1||].    (swap(swap(L1;i;j);i;j)  =  L1)



Date html generated: 2017_10_01-AM-08_38_02
Last ObjectModification: 2017_07_26-PM-04_26_52

Theory : list!


Home Index