Nuprl Lemma : FOL-sequent-evidence-false-hyp
Uniform evidence for a trivially true sequent where the conclusion is
a given member of the hypotheses.⋅
∀hyps:mFOL() List. ∀concl:mFOL(). ∀i:ℕ||hyps||.
  ((↑mFOatomic?(hyps[i]))
  ⇒ (mFOatomic-name(hyps[i]) = "false" ∈ Atom)
  ⇒ (mFOatomic-vars(hyps[i]) = [] ∈ (ℤ List))
  ⇒ FOL-sequent-evidence{i:l}(<hyps, concl>))
Proof
Definitions occuring in Statement : 
FOL-sequent-evidence: FOL-sequent-evidence{i:l}(s), 
mFOatomic-vars: mFOatomic-vars(v), 
mFOatomic-name: mFOatomic-name(v), 
mFOatomic?: mFOatomic?(v), 
mFOL: mFOL(), 
select: L[n], 
length: ||as||, 
nil: [], 
list: T List, 
int_seg: {i..j-}, 
assert: ↑b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
pair: <a, b>, 
natural_number: $n, 
int: ℤ, 
token: "$token", 
atom: Atom, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
FOL-sequent-evidence: FOL-sequent-evidence{i:l}(s), 
FO-uniform-evidence: FO-uniform-evidence(vs;fmla), 
FOL-sequent-abstract: FOL-sequent-abstract(s), 
FOSatWith+: Dom,S,a +|= fmla, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
mFOL-sequent: mFOL-sequent(), 
prop: ℙ, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
less_than: a < b, 
squash: ↓T, 
cand: A c∧ B, 
FOL-hyps-meaning: FOL-hyps-meaning(Dom;S;a;hyps), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
mFOatomic: name(vars), 
mFOatomic?: mFOatomic?(v), 
pi1: fst(t), 
mFOatomic-name: mFOatomic-name(v), 
pi2: snd(t), 
mFOatomic-vars: mFOatomic-vars(v), 
eq_atom: x =a y, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
mFOconnect: mFOconnect(knd;left;right), 
bfalse: ff, 
mFOquant: mFOquant(isall;var;body), 
FOL-abstract: FOL-abstract(fmla), 
mFOL_ind: mFOL_ind, 
AbstractFOAtomic+: AbstractFOAtomic+(n;L), 
FOStruct+: FOStruct+{i:l}(Dom), 
FOStruct: FOStruct(Dom), 
b-union: A ⋃ B, 
tunion: ⋃x:A.B[x], 
bool: 𝔹, 
unit: Unit, 
mFOL-freevars: mFOL-freevars(fmla), 
remove-repeats: remove-repeats(eq;L), 
list_ind: list_ind, 
nil: [], 
it: ⋅, 
sq_type: SQType(T)
Lemmas referenced : 
FOStruct-false-subtype-evidence, 
subtype_rel_FOAssignment, 
mFOL-sequent-freevars_wf, 
mFOL-freevars_wf, 
mFOL-sequent-freevars-subset-1, 
tuple-type_wf, 
FOL-hyps-meaning_wf, 
FOAssignment_wf, 
list_wf, 
mFOL_wf, 
FOStruct+_wf, 
equal-wf-T-base, 
mFOatomic-vars_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
length_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
mFOatomic-name_wf, 
assert_wf, 
mFOatomic?_wf, 
int_seg_wf, 
select-tuple_wf, 
int_seg_subtype_nat, 
length-map, 
select-map, 
subtype_rel_list, 
top_wf, 
equal_wf, 
mFOL-induction, 
squash_wf, 
true_wf, 
mFOatomic_wf, 
iff_weakening_equal, 
equal-wf-base, 
list_subtype_base, 
int_subtype_base, 
atom_subtype_base, 
false_wf, 
bool_wf, 
map_nil_lemma, 
nil_wf, 
b-union_wf, 
subtype_rel_wf, 
FOSatWith+_wf, 
FOL-abstract_wf, 
subtype_base_sq, 
l_contains_nil
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalRule, 
introduction, 
lambdaEquality, 
cut, 
applyEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
independent_pairEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
cumulativity, 
productEquality, 
universeEquality, 
setElimination, 
rename, 
productElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
functionEquality, 
atomEquality, 
imageMemberEquality, 
dependent_set_memberEquality, 
hyp_replacement, 
applyLambdaEquality, 
tokenEquality, 
instantiate, 
equalityElimination
Latex:
\mforall{}hyps:mFOL()  List.  \mforall{}concl:mFOL().  \mforall{}i:\mBbbN{}||hyps||.
    ((\muparrow{}mFOatomic?(hyps[i]))
    {}\mRightarrow{}  (mFOatomic-name(hyps[i])  =  "false")
    {}\mRightarrow{}  (mFOatomic-vars(hyps[i])  =  [])
    {}\mRightarrow{}  FOL-sequent-evidence\{i:l\}(<hyps,  concl>))
Date html generated:
2018_05_21-PM-10_34_44
Last ObjectModification:
2017_07_26-PM-06_42_07
Theory : minimal-first-order-logic
Home
Index