Nuprl Lemma : FOStruct-false-subtype-evidence
∀Dom:Type. ∀S:FOStruct+{i:l}(Dom). ∀fmla:mFOL(). ∀a:FOAssignment(mFOL-freevars(fmla),Dom).
  ((S "false" []) ⊆r Dom,S,a +|= FOL-abstract(fmla))
Proof
Definitions occuring in Statement : 
FOL-abstract: FOL-abstract(fmla), 
mFOL-freevars: mFOL-freevars(fmla), 
mFOL: mFOL(), 
FOSatWith+: Dom,S,a +|= fmla, 
FOStruct+: FOStruct+{i:l}(Dom), 
FOAssignment: FOAssignment(vs,Dom), 
nil: [], 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
apply: f a, 
token: "$token", 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
FOStruct+: FOStruct+{i:l}(Dom), 
FOStruct: FOStruct(Dom), 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_apply: x[s], 
implies: P ⇒ Q, 
FOL-abstract: FOL-abstract(fmla), 
mFOL-freevars: mFOL-freevars(fmla), 
mFOatomic: name(vars), 
mFOL_ind: mFOL_ind, 
AbstractFOAtomic+: AbstractFOAtomic+(n;L), 
FOSatWith+: Dom,S,a +|= fmla, 
mFOconnect: mFOconnect(knd;left;right), 
FOConnective+: FOConnective+(knd), 
uimplies: b supposing a, 
AbstractFOFormula+: AbstractFOFormula+(vs), 
mFOquant: mFOquant(isall;var;body), 
FOQuantifier+: FOQuantifier+(isall), 
guard: {T}, 
FOAssignment: FOAssignment(vs,Dom), 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
let: let, 
ifthenelse: if b then t else f fi , 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
or: P ∨ Q, 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False
Lemmas referenced : 
mFOL-induction, 
all_wf, 
FOAssignment_wf, 
mFOL-freevars_wf, 
subtype_rel_wf, 
nil_wf, 
FOSatWith+_wf, 
FOL-abstract_wf, 
mFOL_wf, 
remove-repeats_wf, 
int-deq_wf, 
list_wf, 
val-union_wf, 
int-valueall-type, 
AbstractFOFormula+_wf, 
filter_wf5, 
bnot_wf, 
eq_int_wf, 
l_member_wf, 
bool_wf, 
FOStruct+_wf, 
list-subtype, 
subtype_rel_b-union-right, 
map_wf, 
subtype_rel_dep_function, 
subtype_rel_sets, 
member-remove-repeats, 
set_wf, 
val-union-l-union, 
eq_atom_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_rel_FOAssignment, 
l-union_wf, 
union-contains, 
union-contains2, 
or_wf, 
equal_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
update-assignment_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
cumulativity, 
applyEquality, 
setElimination, 
rename, 
tokenEquality, 
universeEquality, 
independent_functionElimination, 
intEquality, 
atomEquality, 
independent_isectElimination, 
because_Cache, 
setEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
productElimination, 
unionElimination, 
equalityElimination, 
productEquality, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
voidElimination, 
functionEquality
Latex:
\mforall{}Dom:Type.  \mforall{}S:FOStruct+\{i:l\}(Dom).  \mforall{}fmla:mFOL().  \mforall{}a:FOAssignment(mFOL-freevars(fmla),Dom).
    ((S  "false"  [])  \msubseteq{}r  Dom,S,a  +|=  FOL-abstract(fmla))
Date html generated:
2018_05_21-PM-10_34_28
Last ObjectModification:
2017_07_26-PM-06_42_03
Theory : minimal-first-order-logic
Home
Index