Nuprl Lemma : average-q-between

[a,b:ℚ].  a < (a b/2) < supposing a < b


Proof




Definitions occuring in Statement :  q-between: a < b < c qless: r < s qdiv: (r/s) qadd: s rationals: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  q-between: a < b < c uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B not: ¬A implies:  Q uiff: uiff(P;Q) qeq: qeq(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt eq_int: (i =z j) bfalse: ff assert: b false: False prop: qinv: 1/r qmul: s guard: {T} all: x:A. B[x] sq_type: SQType(T) nequal: a ≠ b ∈  int_nzero: -o true: True subtype_rel: A ⊆B qdiv: (r/s) squash: T qadd: s qless: r < s grp_lt: a < b set_lt: a <b set_blt: a <b b band: p ∧b q infix_ap: y set_le: b pi2: snd(t) oset_of_ocmon: g↓oset dset_of_mon: g↓set grp_le: b pi1: fst(t) qadd_grp: <ℚ+> q_le: q_le(r;s) bor: p ∨bq qpositive: qpositive(r) qsub: s lt_int: i <j bnot: ¬bb rev_uimplies: rev_uimplies(P;Q) rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  qless_witness qdiv_wf assert-qeq qless_wf rationals_wf istype-void qmul_wf qadd_wf qinv_wf int-subtype-rationals iff_weakening_uiff assert_wf qeq_wf2 equal-wf-base subtype_base_sq int_subtype_base istype-int nequal_wf uiff_transitivity uiff_transitivity2 qadd_preserves_qless squash_wf true_wf qmul_over_plus_qrng qmul_comm_qrng qinv_thru_op_q mon_assoc_q qadd_ac_1_q qadd_comm_q qinverse_q qadd_inv_assoc_q mon_ident_q qmul_assoc qmul_ident q_distrib qmul-zero-div qmul_preserves_qless qmul-ident-div false_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut independent_pairFormation hypothesis sqequalHypSubstitution productElimination thin independent_pairEquality extract_by_obid isectElimination hypothesisEquality because_Cache independent_isectElimination lambdaFormation_alt equalityTransitivity equalitySymmetry voidElimination equalityIsType4 inhabitedIsType baseClosed independent_functionElimination universeIsType isect_memberEquality_alt dependent_functionElimination intEquality cumulativity instantiate addLevel dependent_set_memberEquality minusEquality promote_hyp applyEquality natural_numberEquality lemma_by_obid lambdaFormation lambdaEquality imageElimination imageMemberEquality dependent_set_memberEquality_alt lambdaEquality_alt

Latex:
\mforall{}[a,b:\mBbbQ{}].    a  <  (a  +  b/2)  <  b  supposing  a  <  b



Date html generated: 2019_10_16-PM-00_33_52
Last ObjectModification: 2018_10_10-AM-11_05_03

Theory : rationals


Home Index