Nuprl Lemma : average-q-between
∀[a,b:ℚ].  a < (a + b/2) < b supposing a < b
Proof
Definitions occuring in Statement : 
q-between: a < b < c
, 
qless: r < s
, 
qdiv: (r/s)
, 
qadd: r + s
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
q-between: a < b < c
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
qeq: qeq(r;s)
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
eq_int: (i =z j)
, 
bfalse: ff
, 
assert: ↑b
, 
false: False
, 
prop: ℙ
, 
qinv: 1/r
, 
qmul: r * s
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
sq_type: SQType(T)
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
true: True
, 
subtype_rel: A ⊆r B
, 
qdiv: (r/s)
, 
squash: ↓T
, 
qadd: r + s
, 
qless: r < s
, 
grp_lt: a < b
, 
set_lt: a <p b
, 
set_blt: a <b b
, 
band: p ∧b q
, 
infix_ap: x f y
, 
set_le: ≤b
, 
pi2: snd(t)
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
grp_le: ≤b
, 
pi1: fst(t)
, 
qadd_grp: <ℚ+>
, 
q_le: q_le(r;s)
, 
bor: p ∨bq
, 
qpositive: qpositive(r)
, 
qsub: r - s
, 
lt_int: i <z j
, 
bnot: ¬bb
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
qless_witness, 
qdiv_wf, 
assert-qeq, 
qless_wf, 
rationals_wf, 
istype-void, 
qmul_wf, 
qadd_wf, 
qinv_wf, 
int-subtype-rationals, 
iff_weakening_uiff, 
assert_wf, 
qeq_wf2, 
equal-wf-base, 
subtype_base_sq, 
int_subtype_base, 
istype-int, 
nequal_wf, 
uiff_transitivity, 
uiff_transitivity2, 
qadd_preserves_qless, 
squash_wf, 
true_wf, 
qmul_over_plus_qrng, 
qmul_comm_qrng, 
qinv_thru_op_q, 
mon_assoc_q, 
qadd_ac_1_q, 
qadd_comm_q, 
qinverse_q, 
qadd_inv_assoc_q, 
mon_ident_q, 
qmul_assoc, 
qmul_ident, 
q_distrib, 
qmul-zero-div, 
qmul_preserves_qless, 
qmul-ident-div, 
false_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
independent_isectElimination, 
lambdaFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
equalityIsType4, 
inhabitedIsType, 
baseClosed, 
independent_functionElimination, 
universeIsType, 
isect_memberEquality_alt, 
dependent_functionElimination, 
intEquality, 
cumulativity, 
instantiate, 
addLevel, 
dependent_set_memberEquality, 
minusEquality, 
promote_hyp, 
applyEquality, 
natural_numberEquality, 
lemma_by_obid, 
lambdaFormation, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt
Latex:
\mforall{}[a,b:\mBbbQ{}].    a  <  (a  +  b/2)  <  b  supposing  a  <  b
Date html generated:
2019_10_16-PM-00_33_52
Last ObjectModification:
2018_10_10-AM-11_05_03
Theory : rationals
Home
Index