Nuprl Lemma : average-qbetween

[a,b:ℚ].  a ≤ (a b/2) ≤ supposing a ≤ b


Proof




Definitions occuring in Statement :  qbetween: a ≤ b ≤ c qle: r ≤ s qdiv: (r/s) qadd: s rationals: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  qbetween: a ≤ b ≤ c uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B not: ¬A implies:  Q uiff: uiff(P;Q) qeq: qeq(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt eq_int: (i =z j) bfalse: ff assert: b false: False prop: subtype_rel: A ⊆B qdiv: (r/s) true: True int_nzero: -o nequal: a ≠ b ∈  sq_type: SQType(T) all: x:A. B[x] guard: {T} qmul: s qinv: 1/r squash: T qadd: s qless: r < s grp_lt: a < b set_lt: a <b set_blt: a <b b band: p ∧b q infix_ap: y set_le: b pi2: snd(t) oset_of_ocmon: g↓oset dset_of_mon: g↓set grp_le: b pi1: fst(t) qadd_grp: <ℚ+> q_le: q_le(r;s) bor: p ∨bq qpositive: qpositive(r) qsub: s lt_int: i <j bnot: ¬bb rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  qmul-ident-div qmul_preserves_qle qmul-zero-div qmul_ident q_distrib qmul_assoc mon_ident_q qadd_inv_assoc_q qinverse_q qadd_comm_q qadd_ac_1_q mon_assoc_q qinv_thru_op_q qmul_comm_qrng qmul_over_plus_qrng squash_wf qadd_preserves_qle uiff_transitivity2 uiff_transitivity equal-wf-base nequal_wf true_wf int_subtype_base subtype_base_sq int-subtype-rationals qinv_wf qadd_wf qmul_wf false_wf qle_wf rationals_wf equal_wf assert-qeq qdiv_wf qle_witness
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation hypothesis sqequalHypSubstitution productElimination thin independent_pairEquality lemma_by_obid isectElimination hypothesisEquality because_Cache independent_isectElimination lambdaFormation equalityTransitivity equalitySymmetry voidElimination natural_numberEquality applyEquality independent_functionElimination isect_memberEquality promote_hyp minusEquality dependent_set_memberEquality addLevel instantiate cumulativity intEquality dependent_functionElimination baseClosed lambdaEquality imageElimination imageMemberEquality

Latex:
\mforall{}[a,b:\mBbbQ{}].    a  \mleq{}  (a  +  b/2)  \mleq{}  b  supposing  a  \mleq{}  b



Date html generated: 2016_05_15-PM-11_19_33
Last ObjectModification: 2016_01_16-PM-09_18_13

Theory : rationals


Home Index