Nuprl Lemma : binomial_q
∀[a,b:ℚ]. ∀[n:ℕ].  (a + b ↑ n = Σ0 ≤ i < n + 1. choose(n;i) ⋅<ℚ+*> (a ↑ i * b ↑ n - i) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
qsum: Σa ≤ j < b. E[j]
, 
qrng: <ℚ+*>
, 
qmul: r * s
, 
qadd: r + s
, 
rationals: ℚ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
rng_nat_op: n ⋅r e
, 
choose: choose(n;i)
Definitions unfolded in proof : 
qsum: Σa ≤ j < b. E[j]
, 
q-rng-nexp: q-rng-nexp(r;n)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qrng: <ℚ+*>
, 
rng_car: |r|
, 
pi1: fst(t)
, 
rng_plus: +r
, 
pi2: snd(t)
, 
rng_times: *
, 
infix_ap: x f y
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
rng: Rng
, 
squash: ↓T
, 
true: True
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
top: Top
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
lelt: i ≤ j < k
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
int_iseg: {i...j}
, 
int_seg: {i..j-}
, 
crng: CRng
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
Lemmas referenced : 
binomial, 
qrng_wf, 
rationals_wf, 
nat_wf, 
iff_weakening_equal, 
crng_wf, 
qmul_wf, 
rng_wf, 
rng_car_wf, 
rng_nat_op_wf, 
qsum_wf, 
qexp-eq-q-rng-nexp, 
true_wf, 
squash_wf, 
equal_wf, 
int_seg_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
false_wf, 
int_seg_subtype_nat, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermAdd_wf, 
intformless_wf, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
int_seg_properties, 
le_wf, 
lelt_wf, 
subtype_rel_sets, 
choose_wf, 
qadd_wf
Rules used in proof : 
cut, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
isect_memberFormation, 
independent_functionElimination, 
baseClosed, 
imageMemberEquality, 
functionEquality, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
dependent_set_memberEquality, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
dependent_functionElimination, 
applyLambdaEquality, 
independent_pairFormation, 
productElimination, 
lambdaFormation, 
setEquality, 
independent_isectElimination, 
productEquality, 
intEquality, 
lambdaEquality, 
applyEquality, 
rename, 
setElimination, 
addEquality, 
natural_numberEquality, 
because_Cache
Latex:
\mforall{}[a,b:\mBbbQ{}].  \mforall{}[n:\mBbbN{}].    (a  +  b  \muparrow{}  n  =  \mSigma{}0  \mleq{}  i  <  n  +  1.  choose(n;i)  \mcdot{}<\mBbbQ{}+*>  (a  \muparrow{}  i  *  b  \muparrow{}  n  -  i))
Date html generated:
2020_05_20-AM-09_25_50
Last ObjectModification:
2020_02_03-PM-02_21_04
Theory : rationals
Home
Index