Nuprl Lemma : binomial_q

[a,b:ℚ]. ∀[n:ℕ].  (a b ↑ = Σ0 ≤ i < 1. choose(n;i) ⋅<ℚ+*> (a ↑ b ↑ i) ∈ ℚ)


Proof




Definitions occuring in Statement :  qexp: r ↑ n qsum: Σa ≤ j < b. E[j] qrng: <ℚ+*> qmul: s qadd: s rationals: nat: uall: [x:A]. B[x] subtract: m add: m natural_number: $n equal: t ∈ T rng_nat_op: n ⋅e choose: choose(n;i)
Definitions unfolded in proof :  qsum: Σa ≤ j < b. E[j] q-rng-nexp: q-rng-nexp(r;n) uall: [x:A]. B[x] member: t ∈ T qrng: <ℚ+*> rng_car: |r| pi1: fst(t) rng_plus: +r pi2: snd(t) rng_times: * infix_ap: y rev_implies:  Q iff: ⇐⇒ Q rng: Rng squash: T true: True less_than': less_than'(a;b) le: A ≤ B top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  guard: {T} implies:  Q all: x:A. B[x] lelt: i ≤ j < k uimplies: supposing a and: P ∧ Q prop: so_apply: x[s] so_lambda: λ2x.t[x] int_iseg: {i...j} int_seg: {i..j-} crng: CRng subtype_rel: A ⊆B nat:
Lemmas referenced :  binomial qrng_wf rationals_wf nat_wf iff_weakening_equal crng_wf qmul_wf rng_wf rng_car_wf rng_nat_op_wf qsum_wf qexp-eq-q-rng-nexp true_wf squash_wf equal_wf int_seg_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf false_wf int_seg_subtype_nat int_formula_prop_wf int_term_value_constant_lemma int_term_value_add_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf itermAdd_wf intformless_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_properties le_wf lelt_wf subtype_rel_sets choose_wf qadd_wf
Rules used in proof :  cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality isect_memberFormation independent_functionElimination baseClosed imageMemberEquality functionEquality universeEquality equalitySymmetry equalityTransitivity imageElimination dependent_set_memberEquality computeAll voidEquality voidElimination isect_memberEquality int_eqEquality dependent_pairFormation unionElimination dependent_functionElimination applyLambdaEquality independent_pairFormation productElimination lambdaFormation setEquality independent_isectElimination productEquality intEquality lambdaEquality applyEquality rename setElimination addEquality natural_numberEquality because_Cache

Latex:
\mforall{}[a,b:\mBbbQ{}].  \mforall{}[n:\mBbbN{}].    (a  +  b  \muparrow{}  n  =  \mSigma{}0  \mleq{}  i  <  n  +  1.  choose(n;i)  \mcdot{}<\mBbbQ{}+*>  (a  \muparrow{}  i  *  b  \muparrow{}  n  -  i))



Date html generated: 2020_05_20-AM-09_25_50
Last ObjectModification: 2020_02_03-PM-02_21_04

Theory : rationals


Home Index