Nuprl Lemma : member-rat-complex-subdiv2

k,n:ℕ. ∀K:n-dim-complex. ∀c:ℚCube(k).  ((c ∈ (K)') ⇐⇒ ∃a:ℚCube(k). ((a ∈ K) ∧ (↑is-half-cube(k;c;a))))


Proof




Definitions occuring in Statement :  rat-complex-subdiv: (K)' rational-cube-complex: n-dim-complex is-half-cube: is-half-cube(k;h;c) rational-cube: Cube(k) l_member: (x ∈ l) nat: assert: b all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A ge: i ≥  bfalse: ff btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) guard: {T} sq_type: SQType(T) or: P ∨ Q rat-cube-dimension: dim(c) iff: ⇐⇒ Q prop: uimplies: supposing a so_apply: x[s] nat: int_seg: {i..j-} subtype_rel: A ⊆B so_lambda: λ2x.t[x] implies:  Q and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T rational-cube-complex: n-dim-complex all: x:A. B[x]
Lemmas referenced :  assert_wf subtype_rel_list_set list-subtype int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_eq_lemma istype-void int_formula_prop_and_lemma intformle_wf itermVar_wf itermConstant_wf intformeq_wf intformand_wf full-omega-unsat nat_properties assert_of_bnot eqff_to_assert eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases inhabited-rat-cube_wf l_member_wf le_wf int_subtype_base istype-int lelt_wf set_subtype_base rat-cube-dimension_wf equal-wf-base l_all_iff istype-nat rational-cube-complex_wf rational-cube_wf member-rat-complex-subdiv
Rules used in proof :  independent_pairFormation voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt approximateComputation cumulativity instantiate unionElimination independent_functionElimination setIsType because_Cache independent_isectElimination addEquality natural_numberEquality minusEquality applyEquality intEquality lambdaEquality_alt sqequalRule productElimination inhabitedIsType isectElimination universeIsType equalitySymmetry equalityTransitivity hypothesisEquality dependent_functionElimination extract_by_obid introduction hypothesis rename thin setElimination sqequalHypSubstitution cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k,n:\mBbbN{}.  \mforall{}K:n-dim-complex.  \mforall{}c:\mBbbQ{}Cube(k).
    ((c  \mmember{}  (K)')  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:\mBbbQ{}Cube(k).  ((a  \mmember{}  K)  \mwedge{}  (\muparrow{}is-half-cube(k;c;a))))



Date html generated: 2019_10_29-AM-07_59_40
Last ObjectModification: 2019_10_22-AM-10_48_40

Theory : rationals


Home Index