Nuprl Lemma : member-rat-complex-subdiv
∀k:ℕ. ∀K:{c:ℚCube(k)| ↑Inhabited(c)}  List. ∀c:ℚCube(k).
  ((c ∈ (K)') 
⇐⇒ ∃a:ℚCube(k). ((a ∈ K) ∧ (↑is-half-cube(k;c;a))))
Proof
Definitions occuring in Statement : 
rat-complex-subdiv: (K)'
, 
inhabited-rat-cube: Inhabited(c)
, 
is-half-cube: is-half-cube(k;h;c)
, 
rational-cube: ℚCube(k)
, 
l_member: (x ∈ l)
, 
list: T List
, 
nat: ℕ
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
sq_stable: SqStable(P)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
l_member: (x ∈ l)
, 
guard: {T}
, 
true: True
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
rat-complex-subdiv: (K)'
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
l_member-set2, 
istype-less_than, 
istype-le, 
select_member, 
length_wf, 
less_than_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
select_wf, 
sq_stable__assert, 
decidable__equal_rc, 
sq_stable__l_member, 
sq_stable__iff, 
iff_wf, 
sq_stable__all, 
assert_functionality_wrt_uiff, 
iff_weakening_equal, 
subtype_rel_self, 
istype-universe, 
true_wf, 
squash_wf, 
l_member-settype, 
istype-nat, 
is-half-cube_wf, 
subtype_rel_list, 
concat_wf, 
l_member_wf, 
member_map, 
istype-assert, 
half-cubes-of_wf, 
list_wf, 
inhabited-rat-cube_wf, 
assert_wf, 
rational-cube_wf, 
map_wf, 
member-concat
Rules used in proof : 
dependent_set_memberEquality_alt, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
approximateComputation, 
unionElimination, 
natural_numberEquality, 
universeEquality, 
instantiate, 
independent_isectElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
applyLambdaEquality, 
equalityIstype, 
universeIsType, 
productIsType, 
promote_hyp, 
dependent_pairFormation_alt, 
independent_functionElimination, 
productElimination, 
setIsType, 
sqequalRule, 
equalitySymmetry, 
equalityTransitivity, 
inhabitedIsType, 
rename, 
setElimination, 
applyEquality, 
lambdaEquality_alt, 
hypothesis, 
hypothesisEquality, 
setEquality, 
dependent_functionElimination, 
because_Cache, 
thin, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
sqequalHypSubstitution, 
independent_pairFormation, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}K:\{c:\mBbbQ{}Cube(k)|  \muparrow{}Inhabited(c)\}    List.  \mforall{}c:\mBbbQ{}Cube(k).
    ((c  \mmember{}  (K)')  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:\mBbbQ{}Cube(k).  ((a  \mmember{}  K)  \mwedge{}  (\muparrow{}is-half-cube(k;c;a))))
Date html generated:
2019_10_29-AM-07_59_21
Last ObjectModification:
2019_10_21-PM-03_47_01
Theory : rationals
Home
Index