Nuprl Lemma : q-ineq-test

[a,b,c:ℚ].  (False) supposing (0 < and ((b ((1/3) c)) ≤ a) and ((a c) ≤ b))


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s qdiv: (r/s) qmul: s qadd: s rationals: uimplies: supposing a uall: [x:A]. B[x] false: False natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a false: False prop: subtype_rel: A ⊆B not: ¬A implies:  Q uiff: uiff(P;Q) and: P ∧ Q qeq: qeq(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt eq_int: (i =z j) bfalse: ff assert: b guard: {T} qless: r < s grp_lt: a < b set_lt: a <b set_blt: a <b b band: p ∧b q infix_ap: y set_le: b pi2: snd(t) oset_of_ocmon: g↓oset dset_of_mon: g↓set grp_le: b pi1: fst(t) qadd_grp: <ℚ+> q_le: q_le(r;s) qdiv: (r/s) qmul: s qinv: 1/r bor: p ∨bq qpositive: qpositive(r) qsub: s qadd: s lt_int: i <j bnot: ¬bb true: True squash: T
Lemmas referenced :  qmul-ident-div qmul_preserves_qle uiff_transitivity qmul_zero_qrng q_distrib qmul_ident qmul_assoc qadd_inv_assoc_q qadd_ac_1_q mon_assoc_q qmul_over_plus_qrng qadd_preserves_qle qinv_inv_q mon_ident_q qinverse_q qadd_comm_q true_wf squash_wf qadd_preserves_qless uiff_transitivity2 qle_witness equal-wf-base qless_transitivity_2_qorder qle_transitivity_qorder rationals_wf equal_wf assert-qeq qdiv_wf qmul_wf qadd_wf qle_wf int-subtype-rationals qless_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalRule sqequalHypSubstitution because_Cache lemma_by_obid isectElimination thin natural_numberEquality applyEquality hypothesisEquality isect_memberEquality equalityTransitivity equalitySymmetry independent_isectElimination lambdaFormation productElimination independent_pairFormation voidElimination minusEquality baseClosed independent_functionElimination lambdaEquality imageElimination imageMemberEquality

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    (False)  supposing  (0  <  c  and  ((b  +  ((1/3)  *  c))  \mleq{}  a)  and  ((a  +  c  +  c)  \mleq{}  b))



Date html generated: 2016_05_15-PM-11_04_46
Last ObjectModification: 2016_01_16-PM-09_31_01

Theory : rationals


Home Index