Nuprl Lemma : qsqrt_wf
∀[r:{r:ℚ| 0 ≤ r} ]. ∀[n:ℕ+].  (qsqrt(r;n) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qsqrt: qsqrt(r;n)
, 
qle: r ≤ s
, 
rationals: ℚ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qsqrt: qsqrt(r;n)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
int_nzero: ℤ-o
, 
implies: P 
⇒ Q
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
sq_exists: ∃x:A [B[x]]
Lemmas referenced : 
approximate-qsqrt-ext, 
subtype_rel_self, 
rationals_wf, 
qle_wf, 
all_wf, 
nat_plus_wf, 
sq_exists_wf, 
qless_wf, 
qabs_wf, 
qsub_wf, 
qmul_wf, 
qdiv_wf, 
subtype_rel_set, 
less_than_wf, 
int-subtype-rationals, 
int_nzero-rational, 
subtype_rel_sets, 
nequal_wf, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
applyEquality, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
setEquality, 
natural_numberEquality, 
because_Cache, 
hypothesisEquality, 
lambdaFormation, 
lambdaEquality, 
productEquality, 
dependent_functionElimination, 
intEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
baseClosed, 
dependent_set_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[r:\{r:\mBbbQ{}|  0  \mleq{}  r\}  ].  \mforall{}[n:\mBbbN{}\msupplus{}].    (qsqrt(r;n)  \mmember{}  \mBbbQ{})
Date html generated:
2018_05_22-AM-00_30_14
Last ObjectModification:
2018_05_19-PM-04_09_29
Theory : rationals
Home
Index