Nuprl Lemma : monad-of-Kleisli-adjunction

[C:SmallCategory]. ∀[M:Monad(C)].  (adjMonad(Kl(C;M)) M ∈ Monad(C))


Proof




Definitions occuring in Statement :  Kleisli-adjunction: Kl(C;M) Kleisli-right: KlG(C;M) Kleisli-left: KlF(C;M) Kleisli-cat: Kl(C;M) adjunction-monad: adjMonad(adj) cat-monad: Monad(C) small-category: SmallCategory uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a monad-unit: monad-unit(M;x) pi1: fst(t) pi2: snd(t) adjunction-monad: adjMonad(adj) mk-monad: mk-monad Kleisli-adjunction: Kl(C;M) mk-adjunction: mk-adjunction(b.eps[b];a.eta[a]) mk-nat-trans: |→ T[x] monad-functor: monad-functor(M) Kleisli-right: KlG(C;M) Kleisli-left: KlF(C;M) functor-comp: functor-comp(F;G) top: Top so_lambda: so_lambda3 so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s] monad-fun: M(x) cat_comp: f monad-extend: monad-extend(C;M;x;y;f) subtype_rel: A ⊆B true: True squash: T prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q monad-op: monad-op(M;x)
Lemmas referenced :  equal-monads adjunction-monad_wf Kleisli-cat_wf Kleisli-left_wf Kleisli-right_wf Kleisli-adjunction_wf monad-unit_wf cat-monad_wf small-category_wf monad-functor_wf cat-ob_wf cat-arrow_wf equal-functors ob_mk_functor_lemma monad-fun_wf arrow_mk_functor_lemma cat-comp_wf monad-op_wf functor-arrow_wf functor-ob_wf equal_wf squash_wf true_wf functor-arrow-comp iff_weakening_equal monad-equations cat_comp_assoc cat_comp_wf cat-comp-ident2 ap_mk_nat_trans_lemma cat-comp-ident functor-arrow-id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis independent_isectElimination lambdaFormation sqequalRule because_Cache applyEquality isect_memberEquality voidElimination voidEquality lambdaEquality natural_numberEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[M:Monad(C)].    (adjMonad(Kl(C;M))  =  M)



Date html generated: 2020_05_20-AM-08_00_09
Last ObjectModification: 2017_07_28-AM-09_21_13

Theory : small!categories


Home Index