Nuprl Lemma : callbyvalueall_seq-eta

[F,G,K:Top]. ∀[J:ℤ ⟶ ℤ]. ∀[n,m:ℕ].
  callbyvalueall_seq(λi.(K J[i]);G;F;n;m) callbyvalueall_seq(K;G;F;n;m) supposing ∀i:{n..m 1-}. (J[i] i ∈ ℤ)


Proof




Definitions occuring in Statement :  callbyvalueall_seq: callbyvalueall_seq(L;G;F;n;m) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] all: x:A. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q exists: x:A. B[x] uall: [x:A]. B[x] ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: sq_type: SQType(T) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} callbyvalueall_seq: callbyvalueall_seq(L;G;F;n;m) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b lelt: i ≤ j < k squash: T subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  decidable__le subtract_wf nat_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf le_wf decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma equal_wf subtype_base_sq int_subtype_base intformless_wf int_formula_prop_less_lemma ge_wf less_than_wf all_wf int_seg_wf nat_wf le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot decidable__lt lelt_wf iff_weakening_equal top_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin setElimination rename because_Cache hypothesis unionElimination dependent_pairFormation dependent_set_memberEquality isectElimination hypothesisEquality natural_numberEquality independent_isectElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll addEquality productElimination instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination intWeakElimination lambdaFormation sqequalAxiom applyEquality functionExtensionality equalityElimination promote_hyp imageElimination imageMemberEquality baseClosed functionEquality isect_memberFormation

Latex:
\mforall{}[F,G,K:Top].  \mforall{}[J:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[n,m:\mBbbN{}].
    callbyvalueall\_seq(\mlambda{}i.(K  J[i]);G;F;n;m)  \msim{}  callbyvalueall\_seq(K;G;F;n;m) 
    supposing  \mforall{}i:\{n..m  +  1\msupminus{}\}.  (J[i]  =  i)



Date html generated: 2017_10_01-AM-08_42_18
Last ObjectModification: 2017_07_26-PM-04_29_07

Theory : untyped!computation


Home Index