Nuprl Lemma : mk_lambdas-sqequal-n
∀[F1,F2:Base].  ∀n,m:ℕ.  ((F1 ~n F2) ⇒ (mk_lambdas(F1;m) ~n + m mk_lambdas(F2;m)))
Proof
Definitions occuring in Statement : 
mk_lambdas: mk_lambdas(F;m), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
add: n + m, 
base: Base, 
sqequal_n: s ~n t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
nat: ℕ, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
mk_lambdas: mk_lambdas(F;m), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
decidable: Dec(P), 
subtract: n - m, 
squash: ↓T, 
true: True
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
add-zero, 
primrec0_lemma, 
subtract-1-ge-0, 
sqequal_n_wf, 
nat_wf, 
base_wf, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
int_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
decidable__lt, 
add-swap, 
add-commutes, 
add-associates, 
squash_wf, 
true_wf, 
decidable__le, 
intformnot_wf, 
itermAdd_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
le_wf, 
subtype_rel_self, 
primrec-unroll
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomSqequalN, 
functionIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
equalityIsType2, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
addEquality, 
sqequal_n rule, 
hyp_replacement, 
minusEquality, 
imageElimination, 
dependent_set_memberEquality_alt, 
imageMemberEquality, 
universeEquality, 
sqequalZero, 
equalityIsType1
Latex:
\mforall{}[F1,F2:Base].    \mforall{}n,m:\mBbbN{}.    ((F1  \msim{}n  F2)  {}\mRightarrow{}  (mk\_lambdas(F1;m)  \msim{}n  +  m  mk\_lambdas(F2;m)))
Date html generated:
2019_10_15-AM-10_58_59
Last ObjectModification:
2018_10_11-PM-11_06_04
Theory : untyped!computation
Home
Index