Nuprl Lemma : pa-inv_wf

p:{p:{2...}| prime(p)} . ∀x:{x:padic(p)| pa-sep(p;x;0(p))} .
  (pa-inv(p;x) ∈ {y:padic(p)| pa-mul(p;x;y) 1(p) ∈ padic(p)} )


Proof




Definitions occuring in Statement :  pa-inv: pa-inv(p;x) pa-sep: pa-sep(p;x;y) pa-mul: pa-mul(p;x;y) pa-int: k(p) padic: padic(p) prime: prime(a) int_upper: {i...} all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T padic: padic(p) pa-int: k(p) pa-sep: pa-sep(p;x;y) nat: decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} int_upper: {i...} subtype_rel: A ⊆B prop: not: ¬A false: False eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt p-sep: p-sep(x;y) exists: x:A. B[x] p-int: k(p) p-reduce: mod(p^n) nat_plus: + le: A ≤ B and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) less_than': less_than'(a;b) true: True int_seg: {i..j-} lelt: i ≤ j < k pa-inv: pa-inv(p;x) p-adics: p-adics(p) subtract: m sq_stable: SqStable(P) squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top so_lambda: λ2x.t[x] so_apply: x[s] has-value: (a)↓ bnot: ¬bb ge: i ≥  less_than: a < b p-units: p-units(p) basic-padic: basic-padic(p) bool: 𝔹 unit: Unit it: bfalse: ff assert: b pa-mul: pa-mul(p;x;y) bpa-mul: bpa-mul(p;x;y) bpa-equiv: bpa-equiv(p;x;y)
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base padic_wf pa-sep_wf padic_subtype_basic-padic pa-int_wf int_upper_wf prime_wf modulus_base exp_wf_nat_plus nat_plus_subtype_nat decidable__lt istype-false not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf exp-positive le_wf exp_wf2 mu_wf bnot_wf eq_int_wf condition-implies-le minus-add minus-one-mul minus-one-mul-top add-associates add-zero nat_wf subtract_wf nat_plus_properties sq_stable_from_decidable decidable__prime upper_subtype_nat int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf iff_transitivity assert_wf add-swap not_wf equal-wf-T-base iff_weakening_uiff assert_of_bnot assert_of_eq_int set_subtype_base lelt_wf subtract-add-cancel int_seg_properties intformeq_wf int_formula_prop_eq_lemma mu-property value-type-has-value set-value-type int-value-type p-unitize_wf assert_elim bfalse_wf equal_wf squash_wf true_wf istype-universe bool_wf eq_int_eq_true subtype_rel_self iff_weakening_equal btrue_neq_bfalse nat_properties itermAdd_wf int_term_value_add_lemma p-inv_wf false_wf int_seg_wf p-unit-iff p-adics_wf p-mul-comm p-mul_wf pa-mul_wf int_seg_subtype_nat eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int ifthenelse_wf p-units_wf bpa-norm-padic bpa-equiv-iff-norm2 bpa-mul_wf subtype_rel_product exp0_lemma p-int_wf p-mul-1 nat_plus_wf p-1-mul p-mul-assoc fastexp_wf p-adic-property exp-fastexp eqmod_wf less-iff-le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt setElimination thin rename cut sqequalHypSubstitution productElimination introduction extract_by_obid dependent_functionElimination hypothesisEquality hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination setIsType universeIsType applyEquality sqequalRule equalityTransitivity equalitySymmetry voidElimination dependent_set_memberEquality_alt independent_pairFormation productIsType lambdaEquality_alt addEquality minusEquality dependent_pairFormation_alt imageMemberEquality baseClosed imageElimination approximateComputation int_eqEquality isect_memberEquality_alt equalityIsType4 applyLambdaEquality inhabitedIsType equalityIsType1 isectIsType callbyvalueReduce universeEquality equalityIsType3 lambdaFormation lambdaEquality dependent_set_memberEquality baseApply closedConclusion independent_pairEquality dependent_pairEquality_alt equalityElimination equalityIsType2 promote_hyp functionIsType

Latex:
\mforall{}p:\{p:\{2...\}|  prime(p)\}  .  \mforall{}x:\{x:padic(p)|  pa-sep(p;x;0(p))\}  .
    (pa-inv(p;x)  \mmember{}  \{y:padic(p)|  pa-mul(p;x;y)  =  1(p)\}  )



Date html generated: 2019_10_15-AM-10_36_44
Last ObjectModification: 2018_10_08-PM-05_26_06

Theory : rings_1


Home Index