Nuprl Lemma : pa-inv_wf
∀p:{p:{2...}| prime(p)} . ∀x:{x:padic(p)| pa-sep(p;x;0(p))} .
  (pa-inv(p;x) ∈ {y:padic(p)| pa-mul(p;x;y) = 1(p) ∈ padic(p)} )
Proof
Definitions occuring in Statement : 
pa-inv: pa-inv(p;x)
, 
pa-sep: pa-sep(p;x;y)
, 
pa-mul: pa-mul(p;x;y)
, 
pa-int: k(p)
, 
padic: padic(p)
, 
prime: prime(a)
, 
int_upper: {i...}
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
padic: padic(p)
, 
pa-int: k(p)
, 
pa-sep: pa-sep(p;x;y)
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
int_upper: {i...}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
not: ¬A
, 
false: False
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
p-sep: p-sep(x;y)
, 
exists: ∃x:A. B[x]
, 
p-int: k(p)
, 
p-reduce: i mod(p^n)
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
true: True
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
pa-inv: pa-inv(p;x)
, 
p-adics: p-adics(p)
, 
subtract: n - m
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
has-value: (a)↓
, 
bnot: ¬bb
, 
ge: i ≥ j 
, 
less_than: a < b
, 
p-units: p-units(p)
, 
basic-padic: basic-padic(p)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
bfalse: ff
, 
assert: ↑b
, 
pa-mul: pa-mul(p;x;y)
, 
bpa-mul: bpa-mul(p;x;y)
, 
bpa-equiv: bpa-equiv(p;x;y)
Lemmas referenced : 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
padic_wf, 
pa-sep_wf, 
padic_subtype_basic-padic, 
pa-int_wf, 
int_upper_wf, 
prime_wf, 
modulus_base, 
exp_wf_nat_plus, 
nat_plus_subtype_nat, 
decidable__lt, 
istype-false, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
exp-positive, 
le_wf, 
exp_wf2, 
mu_wf, 
bnot_wf, 
eq_int_wf, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add-associates, 
add-zero, 
nat_wf, 
subtract_wf, 
nat_plus_properties, 
sq_stable_from_decidable, 
decidable__prime, 
upper_subtype_nat, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
iff_transitivity, 
assert_wf, 
add-swap, 
not_wf, 
equal-wf-T-base, 
iff_weakening_uiff, 
assert_of_bnot, 
assert_of_eq_int, 
set_subtype_base, 
lelt_wf, 
subtract-add-cancel, 
int_seg_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
mu-property, 
value-type-has-value, 
set-value-type, 
int-value-type, 
p-unitize_wf, 
assert_elim, 
bfalse_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
bool_wf, 
eq_int_eq_true, 
subtype_rel_self, 
iff_weakening_equal, 
btrue_neq_bfalse, 
nat_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
p-inv_wf, 
false_wf, 
int_seg_wf, 
p-unit-iff, 
p-adics_wf, 
p-mul-comm, 
p-mul_wf, 
pa-mul_wf, 
int_seg_subtype_nat, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
ifthenelse_wf, 
p-units_wf, 
bpa-norm-padic, 
bpa-equiv-iff-norm2, 
bpa-mul_wf, 
subtype_rel_product, 
exp0_lemma, 
p-int_wf, 
p-mul-1, 
nat_plus_wf, 
p-1-mul, 
p-mul-assoc, 
fastexp_wf, 
p-adic-property, 
exp-fastexp, 
eqmod_wf, 
less-iff-le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
setElimination, 
thin, 
rename, 
cut, 
sqequalHypSubstitution, 
productElimination, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
setIsType, 
universeIsType, 
applyEquality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
lambdaEquality_alt, 
addEquality, 
minusEquality, 
dependent_pairFormation_alt, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
equalityIsType4, 
applyLambdaEquality, 
inhabitedIsType, 
equalityIsType1, 
isectIsType, 
callbyvalueReduce, 
universeEquality, 
equalityIsType3, 
lambdaFormation, 
lambdaEquality, 
dependent_set_memberEquality, 
baseApply, 
closedConclusion, 
independent_pairEquality, 
dependent_pairEquality_alt, 
equalityElimination, 
equalityIsType2, 
promote_hyp, 
functionIsType
Latex:
\mforall{}p:\{p:\{2...\}|  prime(p)\}  .  \mforall{}x:\{x:padic(p)|  pa-sep(p;x;0(p))\}  .
    (pa-inv(p;x)  \mmember{}  \{y:padic(p)|  pa-mul(p;x;y)  =  1(p)\}  )
Date html generated:
2019_10_15-AM-10_36_44
Last ObjectModification:
2018_10_08-PM-05_26_06
Theory : rings_1
Home
Index