Nuprl Lemma : length-open_box
∀[X:CubicalSet]. ∀[I:Cname List].
  ∀J:nameset(I) List
    ∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[box:open_box(X;I;J;x;i)].  (||box|| = (1 + (||remove-repeats(CnameDeq;J)|| * 2)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
open_box: open_box(X;I;J;x;i), 
cubical-set: CubicalSet, 
nameset: nameset(L), 
cname_deq: CnameDeq, 
coordinate_name: Cname, 
remove-repeats: remove-repeats(eq;L), 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
multiply: n * m, 
add: n + m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nameset: nameset(L), 
subtype_rel: A ⊆r B, 
prop: ℙ, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
open_box: open_box(X;I;J;x;i), 
and: P ∧ Q, 
cand: A c∧ B, 
nat: ℕ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
squash: ↓T, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
guard: {T}, 
sq_stable: SqStable(P), 
coordinate_name: Cname, 
int_upper: {i...}, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uiff: uiff(P;Q), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
l_all: (∀x∈L.P[x]), 
I-face: I-face(X;I), 
face-name: face-name(f), 
face-dimension: dimension(f), 
pi1: fst(t), 
pi2: snd(t), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
equipollent: A ~ B, 
biject: Bij(A;B;f), 
inject: Inj(A;B;f), 
respects-equality: respects-equality(S;T), 
isl: isl(x), 
true: True, 
subtract: n - m, 
l_member: (x ∈ l), 
pairwise: (∀x,y∈L.  P[x; y]), 
surject: Surj(A;B;f), 
l_exists: (∃x∈L. P[x])
Lemmas referenced : 
cname_deq_wf, 
strong-subtype-deq-subtype, 
coordinate_name_wf, 
l_member_wf, 
strong-subtype-set2, 
equipollent-nsub, 
length_wf_nat, 
I-face_wf, 
length_wf, 
nameset_wf, 
remove-repeats_wf, 
add_nat_wf, 
istype-void, 
istype-le, 
multiply_nat_wf, 
nat_properties, 
int_seg_properties, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
decidable__le, 
add-is-int-iff, 
multiply-is-int-iff, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
itermMultiply_wf, 
intformeq_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
false_wf, 
open_box_wf, 
subtype_rel_list, 
int_seg_wf, 
list_wf, 
cubical-set_wf, 
mul_bounds_1a, 
equipollent_functionality_wrt_equipollent2, 
equipollent_transitivity, 
equipollent_inversion, 
equipollent-add, 
union_functionality_wrt_equipollent, 
equipollent_weakening_ext-eq, 
ext-eq_weakening, 
equipollent-multiply, 
product_functionality_wrt_equipollent_left, 
nameset-equipollent, 
select_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
cons_member, 
eq-cname_wf, 
eqtt_to_assert, 
assert-eq-cname, 
istype-less_than, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
equal_wf, 
cons_wf, 
biject_wf, 
face-dimension_wf, 
bnot_wf, 
not_wf, 
respects-equality-set-trivial2, 
istype-assert, 
bool_cases, 
iff_transitivity, 
assert_of_bnot, 
btrue_wf, 
bfalse_wf, 
btrue_neq_bfalse, 
int_subtype_base, 
subtract_wf, 
respects-equality-product, 
respects-equality-trivial, 
subtype-base-respects-equality, 
istype-base, 
set_subtype_base, 
le_wf, 
lelt_wf, 
decidable__equal_int, 
int_seg_subtype_special, 
int_seg_cases, 
face-name_wf, 
decidable__equal_int_seg, 
select_member, 
member_wf, 
istype-false, 
nameset_subtype_base, 
pi1_wf_top, 
pi2_wf, 
product_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
hypothesis, 
applyEquality, 
thin, 
sqequalHypSubstitution, 
isectElimination, 
setEquality, 
hypothesisEquality, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality_alt, 
universeIsType, 
setElimination, 
rename, 
productElimination, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
addEquality, 
natural_numberEquality, 
multiplyEquality, 
imageElimination, 
independent_pairFormation, 
voidElimination, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
equalityIstype, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
functionIsTypeImplies, 
unionEquality, 
productEquality, 
because_Cache, 
equalityElimination, 
inlEquality_alt, 
productIsType, 
instantiate, 
cumulativity, 
inrEquality_alt, 
independent_pairEquality, 
unionIsType, 
functionIsType, 
intEquality, 
sqequalBase, 
hypothesis_subsumption
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[I:Cname  List].
    \mforall{}J:nameset(I)  List
        \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[box:open\_box(X;I;J;x;i)].
            (||box||  =  (1  +  (||remove-repeats(CnameDeq;J)||  *  2)))
 Date html generated: 
2020_05_21-AM-10_51_40
 Last ObjectModification: 
2020_02_07-PM-09_03_35
Theory : cubical!sets
Home
Index