Nuprl Lemma : comp-fun-to-comp-op-inverse

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ Compositon(A)].
  (cop-to-cfun(cfun-to-cop(Gamma;A;cA)) cA ∈ Gamma ⊢ Compositon(A))


Proof




Definitions occuring in Statement :  comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp) comp-op-to-comp-fun: cop-to-cfun(cA) composition-structure: Gamma ⊢ Compositon(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a cubical-type: {X ⊢ _} csm-ap-type: (AF)s interval-1: 1(𝕀) csm-id-adjoin: [u] csm-id: 1(X) csm-adjoin: (s;u) csm-ap: (s)x prop: comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp) comp-op-to-comp-fun: cop-to-cfun(cA) comp-fun-to-comp-op1: comp-fun-to-comp-op1(Gamma;A;comp) csm-composition: (comp)sigma composition-term: comp cA [phi ⊢→ u] a0 uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) all: x:A. B[x] names-hom: I ⟶ J formal-cube: formal-cube(I) pi1: fst(t) functor-ob: ob(F) I_cube: A(I) true: True squash: T implies:  Q cubical-term-at: u(a) csm+: tau+ csm-comp: F cube-context-adjoin: X.A cube-set-restriction: f(s) pi2: snd(t) constant-cubical-type: (X) cc-fst: p cc-snd: q compose: g interval-type: 𝕀 cc-adjoin-cube: (v;u) functor-arrow: arrow(F) cube+: cube+(I;i) context-map: <rho> rev_implies:  Q iff: ⇐⇒ Q false: False assert: b bnot: ¬bb sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] uiff: uiff(P;Q) so_apply: x[s] guard: {T} and: P ∧ Q so_lambda: λ2x.t[x] DeMorgan-algebra: DeMorganAlgebra mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice free-dist-lattice: free-dist-lattice(T; eq) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) bfalse: ff eq_atom: =a y record-update: r[x := v] mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) dM: dM(I) record-select: r.x lattice-point: Point(l) interval-presheaf: 𝕀 cubical-type-at: A(a) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 nat: names: names(I) nc-s: s dM-lift: dM-lift(I;J;f) dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) nh-comp: g ⋅ f top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) ge: i ≥  not: ¬A nequal: a ≠ b ∈  csm-ap-term: (t)s lattice-hom: Hom(l1;l2) bounded-lattice-hom: Hom(l1;l2) bdd-distributive-lattice: BoundedDistributiveLattice constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) face-lattice: face-lattice(T;eq) face_lattice: face_lattice(I) face-presheaf: 𝔽 face-type: 𝔽 subset-iota: iota context-subset: Gamma, phi interval-0: 0(𝕀) canonical-section: canonical-section(Gamma;A;I;rho;a) nc-0: (i0) nat-trans: nat-trans(C;D;F;G) psc_map: A ⟶ B cube_set_map: A ⟶ B type-cat: TypeCat cat-arrow: cat-arrow(C)
Lemmas referenced :  istype-cubical-term context-subset_wf csm-ap-type_wf cube-context-adjoin_wf interval-type_wf csm-id-adjoin_wf-interval-1 csm-context-subset-subtype2 csm-ap-term_wf csm-context-subset-subtype3 subset-cubical-term2 sub_cubical_set_self thin-context-subset-adjoin csm-id-adjoin_wf interval-1_wf subset-cubical-term context-subset-is-subset interval-0_wf csm-id-adjoin_wf-interval-0 constrained-cubical-term-eqcd cubical-term-eqcd face-type_wf cube_set_map_wf cubical_set_wf uniform-comp-function_wf composition-structure_wf cubical-type_wf I_cube_wf fset_wf nat_wf cubical-term-equal formal-cube_wf1 context-map_wf nh-id_wf cubical-term-at_wf cubical_set_cumulativity-i-j csm-ap_wf cubical-type-at_wf csm-ap-type-at cube-set-restriction-id csm-ap-context-map equal_wf squash_wf true_wf istype-universe csm-ap-term-at subtype_rel-equal cubical-type-cumulativity2 csm-comp_wf csm+_wf_interval csm-equal I_cube_pair_redex_lemma iff_weakening_equal names_wf not-added-name neg_assert_of_eq_int assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert DeMorgan-algebra-axioms_wf lattice-join_wf lattice-meet_wf bounded-lattice-axioms_wf bounded-lattice-structure_wf subtype_rel_transitivity DeMorgan-algebra-structure-subtype bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf DeMorgan-algebra-structure_wf subtype_rel_set dM_wf lattice-point_wf subtype_rel_self eq_int_wf new-name_wf add-name_wf csm-ap-restriction interval-type-at cube-set-restriction_wf strong-subtype-self istype-int le_wf strong-subtype-set3 strong-subtype-deq-subtype int-deq_wf fset-member_wf trivial-member-add-name1 dM_inc_wf f-subset-add-name nc-s_wf istype-cubical-type-at cube_set_restriction_pair_lemma cube-set-restriction-comp assert_of_eq_int eqtt_to_assert names-subtype dM-lift-inc not_wf set_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties deq_wf interval-type-ap-morph not_assert_elim btrue_wf btrue_neq_bfalse bfalse_wf eq_int_eq_true bnot_wf assert_elim csm-face-type canonical-section-at face-type-ap-morph face-type-at fl-morph_wf face_lattice_wf cubical-term-at-morph context-subset-map csm-ap-comp-type-sq arrow_pair_lemma names-hom_wf int_subtype_base new-name-property csm-ap-csm-comp cubical_type_at_pair_lemma cubical-term_wf cubical-type-cumulativity s-comp-nc-0-new nh-comp_wf cube-set-restriction-when-id nc-0_wf dM0_wf dM0-sq-empty cc-adjoin-cube_wf cubical-type-ap-morph_wf csm-cubical-type-ap-morph context-subset-term-subtype constrained-cubical-term_wf dM1_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt equalitySymmetry sqequalHypSubstitution setElimination thin rename cut dependent_set_memberEquality_alt functionExtensionality equalityIstype introduction extract_by_obid isectElimination hypothesisEquality hypothesis instantiate applyEquality sqequalRule because_Cache independent_isectElimination productElimination equalityTransitivity universeIsType lambdaEquality_alt inhabitedIsType dependent_functionElimination applyLambdaEquality hyp_replacement natural_numberEquality baseClosed imageMemberEquality imageElimination Error :memTop,  universeEquality independent_functionElimination lambdaFormation_alt voidElimination promote_hyp dependent_pairFormation_alt isectEquality cumulativity productEquality equalityElimination unionElimination dependent_pairEquality_alt intEquality lambdaEquality lambdaFormation levelHypothesis independent_pairFormation voidEquality isect_memberEquality int_eqEquality dependent_pairFormation approximateComputation dependent_set_memberEquality addLevel productIsType functionEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  Compositon(A)].
    (cop-to-cfun(cfun-to-cop(Gamma;A;cA))  =  cA)



Date html generated: 2020_05_20-PM-04_35_07
Last ObjectModification: 2020_05_01-PM-09_20_18

Theory : cubical!type!theory


Home Index