Nuprl Lemma : glue-comp-agrees

The type (not displayed) of the equality in this lemma 
is composition-structure{i:l}(G, psi; T)
This means that in "extent" psi, when ⌜G ⊢ Glue [psi ⊢→ (T;f)] T ∈ {G, psi ⊢ _}⌝the
composition for ⌜Glue [psi ⊢→ (T;f)] A⌝ is the same as the composition for T.

This property of the compostion for Glue is used in construction of the 
composition for c𝕌  (the cubiucal universe type).⋅

[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G +⊢ Compositon(A)]. ∀[psi:{G ⊢ _:𝔽}]. ∀[T:{G, psi ⊢ _}]. ∀[cT:G, psi +⊢ Compositon(T)].
[f:{G, psi ⊢ _:Equiv(T;A)}].
  (comp(Glue [psi ⊢→ (T, f)] A)  cT ∈ G, psi ⊢ Compositon(T))


Proof




Definitions occuring in Statement :  glue-comp: comp(Glue [phi ⊢→ (T, f)] A)  composition-structure: Gamma ⊢ Compositon(A) cubical-equiv: Equiv(T;A) context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} all: x:A. B[x] implies:  Q cubical-type: {X ⊢ _} csm-ap-type: (AF)s interval-1: 1(𝕀) csm-id-adjoin: [u] csm-id: 1(X) csm-adjoin: (s;u) csm-ap: (s)x prop: squash: T same-cubical-type: Gamma ⊢ B true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q glue-comp: comp(Glue [phi ⊢→ (T, f)] A)  partial-term-0: u[0] csm-comp-structure: (cA)tau interval-type: 𝕀 csm-comp: F compose: g partial-term-1: u[1] let: let comp_term: comp cA [phi ⊢→ u] a0 uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) interval-0: 0(𝕀) face-1: 1(𝔽) csm-ap-term: (t)s csm+: tau+ cube-context-adjoin: X.A cc-snd: q cc-fst: p constant-cubical-type: (X) pi2: snd(t) pi1: fst(t) cc-adjoin-cube: (v;u) cubical-term-at: u(a) same-cubical-term: X ⊢ u=v:A equiv-fun: equiv-fun(f) cubical-fst: p.1 pres-c1: pres-c1(G;phi;f;t;t0;cA) pres-c2: pres-c2(G;phi;f;t;t0;cT) cand: c∧ B
Lemmas referenced :  glue-type_wf equiv-fun_wf context-subset_wf thin-context-subset csm-glue-type cube-context-adjoin_wf interval-type_wf cube_set_map_subtype3 context-subset-is-subset sub_cubical_set_self cubical_set_cumulativity-i-j cube_set_map_cumulativity-i-j istype-cubical-term csm-ap-type_wf csm-id-adjoin_wf-interval-1 csm-context-subset-subtype2 csm-ap-term_wf csm-context-subset-subtype3 subset-cubical-term2 thin-context-subset-adjoin csm-id-adjoin_wf interval-1_wf subset-cubical-term interval-0_wf csm-id-adjoin_wf-interval-0 constrained-cubical-term-eqcd cubical-term-eqcd face-type_wf cube_set_map_wf cubical_set_wf uniform-comp-function-cumulativity uniform-comp-function_wf cubical-equiv_wf composition-structure_wf cubical-type_wf squash_wf true_wf glue-type-constraint equal_wf istype-universe subset-cubical-type sub_cubical_set_functionality csm-face-type cc-fst_wf_interval context-adjoin-subset1 face-1-in-context-subset csm-face-1 cubical-fun_wf csm-cubical-fun subtype_rel_self iff_weakening_equal unglue-term_wf2 context-subset-term-subtype glue-type-subset cubical-fun-subset sub_cubical_set_transitivity context-subset-swap sub_cubical_set_functionality2 face-1_wf context-1-subset context-iterated-subset0 subtype_rel_wf glue-type-1' cubical-type-cumulativity2 cubical-term_wf cubical-app_wf_fun csm-cubical-app partial-term-0_wf csm-id-adjoin-subset comp_term_wf csm-comp-structure-composition-function composition-structure-cumulativity context-adjoin-subset4 face-forall-1 csm-id_wf context-iterated-subset1 context-iterated-subset2 csm-ap-id-term subtype_rel-equal csm-equal2 csm-comp_wf csm+_wf_interval I_cube_wf fset_wf nat_wf I_cube_pair_redex_lemma csm-ap_wf cc-adjoin-cube_wf cubical-term-equal cubical-term-at_wf csm-id-comp case-term-1 context-subset-adjoin-subtype face-forall_wf csm-comp-structure_wf composition-structure-subset pres_wf csm-comp-structure-subset pres-c1_wf composition-function-subset pres-c2_wf path-type_wf equal_functionality_wrt_subtype_rel2 constrained-cubical-term_wf composition-function_wf context-adjoin-subset2 partial-term-1_wf sub_cubical_set_wf comp_term-subset csm-equiv-fun path-type-subset fiber-comp_wf context-subset-map csm-cubical-equiv cubical-equiv-subset face-or_wf equiv-term_wf cubical-fiber-subset cubical-fiber_wf equal-wf-T-base fiber-member_wf glue-term-1' face-1-or fiber-member-fiber-point
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt equalitySymmetry sqequalHypSubstitution setElimination thin rename cut dependent_set_memberEquality_alt functionExtensionality introduction extract_by_obid isectElimination hypothesisEquality hypothesis because_Cache instantiate applyEquality independent_isectElimination sqequalRule inhabitedIsType lambdaFormation_alt equalityIstype equalityTransitivity dependent_functionElimination independent_functionElimination productElimination universeIsType lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement universeEquality cumulativity Error :memTop,  applyLambdaEquality independent_pairFormation productIsType

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].  \mforall{}[psi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{G,  psi  \mvdash{}  \_\}].
\mforall{}[cT:G,  psi  +\mvdash{}  Compositon(T)].  \mforall{}[f:\{G,  psi  \mvdash{}  \_:Equiv(T;A)\}].
    (comp(Glue  [psi  \mvdash{}\mrightarrow{}  (T,  f)]  A)    =  cT)



Date html generated: 2020_05_20-PM-07_03_45
Last ObjectModification: 2020_04_25-AM-11_28_41

Theory : cubical!type!theory


Home Index