Nuprl Lemma : glue-comp-agrees
The type (not displayed) of the equality in this lemma 
is composition-structure{i:l}(G, psi; T)
This means that in "extent" psi, when ⌜G ⊢ Glue [psi ⊢→ (T;f)] A = T ∈ {G, psi ⊢ _}⌝, the
composition for ⌜Glue [psi ⊢→ (T;f)] A⌝ is the same as the composition for T.
This property of the compostion for Glue is used in construction of the 
composition for c𝕌  (the cubiucal universe type).⋅
∀[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G +⊢ Compositon(A)]. ∀[psi:{G ⊢ _:𝔽}]. ∀[T:{G, psi ⊢ _}]. ∀[cT:G, psi +⊢ Compositon(T)].
∀[f:{G, psi ⊢ _:Equiv(T;A)}].
  (comp(Glue [psi ⊢→ (T, f)] A)  = cT ∈ G, psi ⊢ Compositon(T))
Proof
Definitions occuring in Statement : 
glue-comp: comp(Glue [phi ⊢→ (T, f)] A) 
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
cubical-equiv: Equiv(T;A)
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
cubical-type: {X ⊢ _}
, 
csm-ap-type: (AF)s
, 
interval-1: 1(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
prop: ℙ
, 
squash: ↓T
, 
same-cubical-type: Gamma ⊢ A = B
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
glue-comp: comp(Glue [phi ⊢→ (T, f)] A) 
, 
partial-term-0: u[0]
, 
csm-comp-structure: (cA)tau
, 
interval-type: 𝕀
, 
csm-comp: G o F
, 
compose: f o g
, 
partial-term-1: u[1]
, 
let: let, 
comp_term: comp cA [phi ⊢→ u] a0
, 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
, 
interval-0: 0(𝕀)
, 
face-1: 1(𝔽)
, 
csm-ap-term: (t)s
, 
csm+: tau+
, 
cube-context-adjoin: X.A
, 
cc-snd: q
, 
cc-fst: p
, 
constant-cubical-type: (X)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
cc-adjoin-cube: (v;u)
, 
cubical-term-at: u(a)
, 
same-cubical-term: X ⊢ u=v:A
, 
equiv-fun: equiv-fun(f)
, 
cubical-fst: p.1
, 
pres-c1: pres-c1(G;phi;f;t;t0;cA)
, 
pres-c2: pres-c2(G;phi;f;t;t0;cT)
, 
cand: A c∧ B
Lemmas referenced : 
glue-type_wf, 
equiv-fun_wf, 
context-subset_wf, 
thin-context-subset, 
csm-glue-type, 
cube-context-adjoin_wf, 
interval-type_wf, 
cube_set_map_subtype3, 
context-subset-is-subset, 
sub_cubical_set_self, 
cubical_set_cumulativity-i-j, 
cube_set_map_cumulativity-i-j, 
istype-cubical-term, 
csm-ap-type_wf, 
csm-id-adjoin_wf-interval-1, 
csm-context-subset-subtype2, 
csm-ap-term_wf, 
csm-context-subset-subtype3, 
subset-cubical-term2, 
thin-context-subset-adjoin, 
csm-id-adjoin_wf, 
interval-1_wf, 
subset-cubical-term, 
interval-0_wf, 
csm-id-adjoin_wf-interval-0, 
constrained-cubical-term-eqcd, 
cubical-term-eqcd, 
face-type_wf, 
cube_set_map_wf, 
cubical_set_wf, 
uniform-comp-function-cumulativity, 
uniform-comp-function_wf, 
cubical-equiv_wf, 
composition-structure_wf, 
cubical-type_wf, 
squash_wf, 
true_wf, 
glue-type-constraint, 
equal_wf, 
istype-universe, 
subset-cubical-type, 
sub_cubical_set_functionality, 
csm-face-type, 
cc-fst_wf_interval, 
context-adjoin-subset1, 
face-1-in-context-subset, 
csm-face-1, 
cubical-fun_wf, 
csm-cubical-fun, 
subtype_rel_self, 
iff_weakening_equal, 
unglue-term_wf2, 
context-subset-term-subtype, 
glue-type-subset, 
cubical-fun-subset, 
sub_cubical_set_transitivity, 
context-subset-swap, 
sub_cubical_set_functionality2, 
face-1_wf, 
context-1-subset, 
context-iterated-subset0, 
subtype_rel_wf, 
glue-type-1', 
cubical-type-cumulativity2, 
cubical-term_wf, 
cubical-app_wf_fun, 
csm-cubical-app, 
partial-term-0_wf, 
csm-id-adjoin-subset, 
comp_term_wf, 
csm-comp-structure-composition-function, 
composition-structure-cumulativity, 
context-adjoin-subset4, 
face-forall-1, 
csm-id_wf, 
context-iterated-subset1, 
context-iterated-subset2, 
csm-ap-id-term, 
subtype_rel-equal, 
csm-equal2, 
csm-comp_wf, 
csm+_wf_interval, 
I_cube_wf, 
fset_wf, 
nat_wf, 
I_cube_pair_redex_lemma, 
csm-ap_wf, 
cc-adjoin-cube_wf, 
cubical-term-equal, 
cubical-term-at_wf, 
csm-id-comp, 
case-term-1, 
context-subset-adjoin-subtype, 
face-forall_wf, 
csm-comp-structure_wf, 
composition-structure-subset, 
pres_wf, 
csm-comp-structure-subset, 
pres-c1_wf, 
composition-function-subset, 
pres-c2_wf, 
path-type_wf, 
equal_functionality_wrt_subtype_rel2, 
constrained-cubical-term_wf, 
composition-function_wf, 
context-adjoin-subset2, 
partial-term-1_wf, 
sub_cubical_set_wf, 
comp_term-subset, 
csm-equiv-fun, 
path-type-subset, 
fiber-comp_wf, 
context-subset-map, 
csm-cubical-equiv, 
cubical-equiv-subset, 
face-or_wf, 
equiv-term_wf, 
cubical-fiber-subset, 
cubical-fiber_wf, 
equal-wf-T-base, 
fiber-member_wf, 
glue-term-1', 
face-1-or, 
fiber-member-fiber-point
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
equalitySymmetry, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
dependent_set_memberEquality_alt, 
functionExtensionality, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
instantiate, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIstype, 
equalityTransitivity, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
universeIsType, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
universeEquality, 
cumulativity, 
Error :memTop, 
applyLambdaEquality, 
independent_pairFormation, 
productIsType
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].  \mforall{}[psi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{G,  psi  \mvdash{}  \_\}].
\mforall{}[cT:G,  psi  +\mvdash{}  Compositon(T)].  \mforall{}[f:\{G,  psi  \mvdash{}  \_:Equiv(T;A)\}].
    (comp(Glue  [psi  \mvdash{}\mrightarrow{}  (T,  f)]  A)    =  cT)
Date html generated:
2020_05_20-PM-07_03_45
Last ObjectModification:
2020_04_25-AM-11_28_41
Theory : cubical!type!theory
Home
Index