Nuprl Lemma : implies-ip-triangle
∀rv:InnerProductSpace. ∀a,b,c,a':Point.  (a_b_a' ⇒ ab=a'b ⇒ ab=cb ⇒ c # a ⇒ c # a' ⇒ Δ(a;b;c))
Proof
Definitions occuring in Statement : 
ip-triangle: Δ(a;b;c), 
ip-between: a_b_c, 
ip-congruent: ab=cd, 
inner-product-space: InnerProductSpace, 
ss-sep: x # y, 
ss-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
ip-triangle: Δ(a;b;c), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
req: x = y, 
ip-congruent: ab=cd, 
prop: ℙ, 
guard: {T}, 
uimplies: b supposing a, 
and: P ∧ Q, 
rv-sub: x - y, 
rv-minus: -x, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
ss-eq: x ≡ y, 
not: ¬A, 
or: P ∨ Q, 
exists: ∃x:A. B[x], 
rsub: x - y, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
rneq: x ≠ y, 
less_than: a < b, 
squash: ↓T, 
true: True
Lemmas referenced : 
ip-triangle-lemma, 
rv-sub_wf, 
inner-product-space_subtype, 
ss-sep_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ip-congruent_wf, 
ip-between_wf, 
ss-point_wf, 
ss-eq_wf, 
rv-add_wf, 
rv-mul_wf, 
int-to-real_wf, 
radd_wf, 
rmul_wf, 
rv-minus_wf, 
rv-0_wf, 
rv-norm_wf, 
real_wf, 
rleq_wf, 
req_wf, 
rv-ip_wf, 
uiff_transitivity, 
ss-eq_functionality, 
rv-add_functionality, 
ss-eq_weakening, 
rv-mul-linear, 
rv-add-assoc, 
rv-mul-mul, 
rv-add-swap, 
rv-mul-add-alt, 
rv-mul_functionality, 
req_transitivity, 
radd_functionality, 
rmul-int, 
req_weakening, 
radd-int, 
rv-mul0, 
rv-0-add, 
rless_functionality, 
rv-norm_functionality, 
ss-sep-symmetry, 
rv-norm-positive, 
rv-sep-iff, 
false_wf, 
or_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
ip-between-iff, 
rsub_wf, 
ip-congruent_functionality, 
rv-sub_functionality, 
rv-norm-equal-iff, 
rminus_wf, 
rv-mul-1-add, 
req_inversion, 
rminus-as-rmul, 
rmul_functionality, 
rminus-radd, 
radd_comm, 
rminus-rminus, 
rmul-minus, 
rmul_over_rminus, 
rminus_functionality, 
rmul-distrib, 
rmul-one-both, 
req_functionality, 
rv-ip_functionality, 
rv-add-comm, 
rv-mul-1-add-alt, 
radd-ac, 
radd-assoc, 
radd-zero-both, 
rv-ip-mul, 
rv-ip-mul2, 
rnexp_wf, 
le_wf, 
rv-norm-squared, 
rnexp-positive, 
equal_wf, 
rless_wf, 
rdiv_wf, 
rless-int, 
rmul-assoc, 
rmul_preserves_req, 
rmul-distrib2, 
rmul_comm, 
rmul-ac, 
radd-preserves-req, 
radd-rminus-both, 
rmul-zero-both, 
rmul-rdiv-cancel2, 
rsub_functionality, 
rmul-rdiv-cancel, 
uiff_transitivity3, 
squash_wf, 
true_wf, 
rminus-int, 
rv-mul-add, 
rmul-int-rdiv, 
uiff_transitivity2, 
ip-between_functionality, 
ss-eq_inversion, 
ip-between-same, 
rv-norm0, 
rv-norm-is-zero, 
rv-mul-0
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
independent_functionElimination, 
instantiate, 
independent_isectElimination, 
natural_numberEquality, 
minusEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
productElimination, 
functionEquality, 
unionElimination, 
promote_hyp, 
multiplyEquality, 
addEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
inrFormation, 
imageMemberEquality, 
baseClosed, 
addLevel, 
impliesFunctionality, 
imageElimination, 
voidElimination
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c,a':Point.    (a\_b\_a'  {}\mRightarrow{}  ab=a'b  {}\mRightarrow{}  ab=cb  {}\mRightarrow{}  c  \#  a  {}\mRightarrow{}  c  \#  a'  {}\mRightarrow{}  \mDelta{}(a;b;c))
Date html generated:
2017_10_04-PM-11_59_36
Last ObjectModification:
2017_03_10-PM-07_05_55
Theory : inner!product!spaces
Home
Index