Nuprl Lemma : Cauchy-Schwarz3

[n:ℕ]. ∀[x,y:ℕn ⟶ ℝ].
  (|Σ{x[i] y[i] 0≤i≤1}| ≤ (rsqrt(Σ{x[i] x[i] 0≤i≤1}) rsqrt(Σ{y[i] y[i] 0≤i≤1})))


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rsum: Σ{x[k] n≤k≤m} rleq: x ≤ y rabs: |x| rmul: b real: int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: le: A ≤ B less_than: a < b pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] rleq: x ≤ y rnonneg: rnonneg(x) nat_plus: + subtype_rel: A ⊆B sq_stable: SqStable(P) squash: T less_than': less_than'(a;b) true: True iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T} uiff: uiff(P;Q) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b subtract: m eq_int: (i =z j) nequal: a ≠ b ∈ 
Lemmas referenced :  Cauchy-Schwarz2 rsum_nonneg subtract_wf rmul_wf int_seg_wf subtract-add-cancel nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf lelt_wf square-nonneg intformle_wf itermSubtract_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_subtract_lemma int_term_value_constant_lemma le_wf less_than'_wf rsub_wf rsum_wf nat_plus_properties int-to-real_wf nat_plus_wf real_wf nat_wf sq_stable__rleq rabs_wf rsqrt_wf rleq_wf req_wf equal_wf rnexp-rleq-iff zero-rleq-rabs rmul-nonneg-case1 rsqrt_nonneg less_than_wf rnexp_wf false_wf uimplies_transitivity rleq_functionality_wrt_implies rleq_weakening_equal rleq_functionality req_weakening req_transitivity rnexp-rmul rmul_functionality rsqrt-rnexp-2 eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma rnexp_unroll req_inversion rabs-rmul rabs-of-nonneg
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation natural_numberEquality setElimination rename because_Cache sqequalRule lambdaEquality applyEquality functionExtensionality dependent_set_memberEquality productElimination independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll addEquality independent_pairEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality setEquality productEquality independent_functionElimination imageMemberEquality baseClosed imageElimination equalityElimination promote_hyp instantiate cumulativity

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}].
    (|\mSigma{}\{x[i]  *  y[i]  |  0\mleq{}i\mleq{}n  -  1\}|  \mleq{}  (rsqrt(\mSigma{}\{x[i]  *  x[i]  |  0\mleq{}i\mleq{}n  -  1\})
    *  rsqrt(\mSigma{}\{y[i]  *  y[i]  |  0\mleq{}i\mleq{}n  -  1\})))



Date html generated: 2017_10_03-AM-10_46_34
Last ObjectModification: 2017_07_28-AM-08_19_55

Theory : reals


Home Index