Nuprl Lemma : harmonic-series-diverges-to-infinity
∀n:ℕ. ((r1 + (r(n)/r(2))) ≤ Σ{(r1/r(i)) | 1≤i≤2^n})
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}, 
rdiv: (x/y), 
rleq: x ≤ y, 
radd: a + b, 
int-to-real: r(n), 
exp: i^n, 
nat: ℕ, 
all: ∀x:A. B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
nat_plus: ℕ+, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
rneq: x ≠ y, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
rge: x ≥ y, 
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m], 
nequal: a ≠ b ∈ T , 
sq_type: SQType(T), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
rdiv: (x/y), 
itermConstant: "const", 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
less_than'_wf, 
rsub_wf, 
rsum_wf, 
exp_wf2, 
nat_plus_properties, 
rdiv_wf, 
int-to-real_wf, 
int_seg_properties, 
int_seg_wf, 
radd_wf, 
nat_plus_wf, 
le_wf, 
rless-int, 
decidable__lt, 
intformnot_wf, 
int_formula_prop_not_lemma, 
rless_wf, 
decidable__le, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
nat_wf, 
rsum-single, 
req_weakening, 
rleq_functionality, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
int_subtype_base, 
equal-wf-base, 
exp0_lemma, 
radd-int, 
rdiv-zero, 
radd_functionality, 
uiff_transitivity, 
false_wf, 
rleq-int-fractions2, 
rleq_wf, 
exp_step, 
rsum-split, 
exp_wf_nat_plus, 
le_weakening2, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
rsum_functionality_wrt_rleq, 
rleq-int-fractions, 
mul_nat_plus, 
rmul_wf, 
rneq-int, 
int_entire_a, 
subtype_base_sq, 
true_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
rsum-constant2, 
decidable__equal_int, 
rmul_preserves_req, 
rinv_wf2, 
rneq_functionality, 
rmul-int, 
req_functionality, 
req_transitivity, 
rmul_functionality, 
rinv_functionality2, 
req_inversion, 
rinv-of-rmul, 
real_term_polynomial, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rmul-rinv, 
rmul-rinv3, 
rmul-rdiv-cancel, 
radd_comm, 
radd-assoc, 
rmul_comm, 
rmul-one-both, 
rmul-distrib, 
rleq-int, 
rmul_preserves_rleq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
applyEquality, 
because_Cache, 
addEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
inrFormation, 
unionElimination, 
imageMemberEquality, 
baseClosed, 
setEquality, 
multiplyEquality, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
addLevel, 
instantiate, 
cumulativity, 
equalityElimination, 
impliesFunctionality, 
functionEquality
Latex:
\mforall{}n:\mBbbN{}.  ((r1  +  (r(n)/r(2)))  \mleq{}  \mSigma{}\{(r1/r(i))  |  1\mleq{}i\mleq{}2\^{}n\})
 Date html generated: 
2017_10_03-AM-09_19_40
 Last ObjectModification: 
2017_07_28-AM-07_44_32
Theory : reals
Home
Index