Nuprl Lemma : fps-geometric-slice_lemma
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[m:ℕ]. ∀[n:ℕ+m + 1]. ∀[g:PowerSeries(X;r)].
    [(1÷(1-g))]_m = ([(1÷(1-g))]_m - n*g) ∈ PowerSeries(X;r) supposing g = [g]_n ∈ PowerSeries(X;r) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-slice: [f]_n, 
fps-div: (f÷g), 
fps-mul: (f*g), 
fps-sub: (f-g), 
fps-one: 1, 
power-series: PowerSeries(X;r), 
deq: EqDecider(T), 
int_seg: {i..j-}, 
nat: ℕ, 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng, 
rng_one: 1
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
crng: CRng, 
rng: Rng, 
fps-rng: fps-rng(r), 
rng_car: |r|, 
pi1: fst(t), 
rng_plus: +r, 
pi2: snd(t), 
rng_zero: 0, 
rng_minus: -r, 
rng_times: *, 
rng_one: 1, 
empty-bag: {}, 
fps-one: 1, 
fps-sub: (f-g), 
fps-coeff: f[b], 
fps-neg: -(f), 
bag-null: bag-null(bs), 
fps-add: (f+g), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
squash: ↓T, 
prop: ℙ, 
true: True, 
int_seg: {i..j-}, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
fps-slice: [f]_n, 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
nat: ℕ, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
bfalse: ff, 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
infix_ap: x f y, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
ring_p: IsRing(T;plus;zero;neg;times;one), 
group_p: IsGroup(T;op;id;inv), 
cand: A c∧ B, 
comm: Comm(T;op), 
fps-summation: fps-summation(r;b;x.f[x]), 
bor: p ∨bq, 
nequal: a ≠ b ∈ T , 
bag-member: x ↓∈ bs, 
bag-no-repeats: bag-no-repeats(T;bs), 
decidable: Dec(P), 
single-bag: {x}, 
bag-append: as + bs, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
sq_or: a ↓∨ b, 
rev_uimplies: rev_uimplies(P;Q), 
sq_stable: SqStable(P), 
upto: upto(n), 
eq_int: (i =z j)
Lemmas referenced : 
fps-rng_wf, 
crng_properties, 
rng_properties, 
fps-mul-slice, 
fps-sub_wf, 
fps-one_wf, 
fps-div_wf, 
rng_one_wf, 
fps-div-property, 
null_nil_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
rng_car_wf, 
fps-coeff_wf, 
bag_wf, 
power-series_wf, 
crng_wf, 
empty-bag_wf, 
fps-slice_wf, 
subtype_rel_self, 
iff_weakening_equal, 
bag_size_empty_lemma, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
int_seg_properties, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
rng_zero_wf, 
rng_times_wf, 
rng_plus_wf, 
rng_minus_wf, 
fps-summation_wf, 
fps-mul_wf, 
subtract_wf, 
upto_wf, 
list-subtype-bag, 
int_seg_wf, 
fps-one-slice, 
nat_wf, 
deq_wf, 
valueall-type_wf, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-T-base, 
rng_times_over_plus, 
rng_times_over_minus, 
rng_times_zero, 
rng_times_one, 
rng_minus_zero, 
rng_plus_zero, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
fps-zero_wf, 
fps-add-comm, 
bag-summation-filter, 
fps-add_wf, 
bor_wf, 
bag-summation-equal, 
ifthenelse_wf, 
bag-member_wf, 
fps-sub-slice, 
fps-ext, 
bag-null_wf, 
assert-bag-null, 
bag-size_wf, 
fps-slice-slice, 
intformnot_wf, 
int_formula_prop_not_lemma, 
neg_id_fps, 
mon_ident_fps, 
fps-neg_wf, 
mul_zero_fps, 
bag-extensionality-no-repeats, 
decidable__int_equal, 
bag-filter_wf, 
subtype_rel_bag, 
bag-append_wf, 
single-bag_wf, 
bag-filter-no-repeats, 
subtype_rel_list, 
no_repeats_upto, 
decidable__le, 
le_wf, 
equal-wf-base-T, 
list_subtype_base, 
int_subtype_base, 
no_repeats_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
cons_wf, 
nil_wf, 
no_repeats_cons, 
no_repeats_singleton, 
equal-wf-base, 
member_singleton, 
l_member_wf, 
bag-member-filter, 
or_wf, 
bag-member-append, 
bag-member-single, 
assert_of_bor, 
sq_stable__bag-member, 
bag-member-from-upto, 
decidable__lt, 
decidable__equal_int, 
bag-summation-append, 
bag-summation-single, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
mul_over_plus_fps, 
mul_over_minus_fps, 
mul_one_fps, 
mul_comm_fps, 
mon_assoc_fps, 
abmonoid_ac_1_fps, 
abmonoid_comm_fps, 
iabgrp_op_inv_assoc_fps
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
because_Cache, 
applyEquality, 
lambdaEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
productElimination, 
independent_functionElimination, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
addEquality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
promote_hyp, 
cumulativity, 
hyp_replacement, 
axiomEquality, 
universeEquality, 
impliesFunctionality, 
setEquality, 
dependent_set_memberEquality, 
productEquality, 
baseApply, 
closedConclusion, 
addLevel, 
inlFormation, 
inrFormation, 
orFunctionality, 
functionEquality, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}m  +  1].  \mforall{}[g:PowerSeries(X;r)].
        [(1\mdiv{}(1-g))]\_m  =  ([(1\mdiv{}(1-g))]\_m  -  n*g)  supposing  g  =  [g]\_n  
    supposing  valueall-type(X)
 Date html generated: 
2018_05_21-PM-09_58_06
 Last ObjectModification: 
2018_05_19-PM-04_14_52
Theory : power!series
Home
Index