Nuprl Lemma : half-cubes-listable
∀k:ℕ. ∀c:{c:ℚCube(k)| ↑Inhabited(c)} .
  (∃L:ℚCube(k) List [(no_repeats(ℚCube(k);L) ∧ (∀h:ℚCube(k). ((h ∈ L) ⇐⇒ ↑is-half-cube(k;h;c))))])
Proof
Definitions occuring in Statement : 
inhabited-rat-cube: Inhabited(c), 
is-half-cube: is-half-cube(k;h;c), 
rational-cube: ℚCube(k), 
no_repeats: no_repeats(T;l), 
l_member: (x ∈ l), 
list: T List, 
nat: ℕ, 
assert: ↑b, 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
prop: ℙ, 
sq_exists: ∃x:A [B[x]], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rational-cube: ℚCube(k), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
cand: A c∧ B, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
is-half-cube: is-half-cube(k;h;c), 
bdd-all: bdd-all(n;i.P[i]), 
primrec: primrec(n;b;c), 
primtailrec: primtailrec(n;i;b;f), 
btrue: tt, 
true: True, 
less_than: a < b, 
squash: ↓T, 
uiff: uiff(P;Q), 
subtract: n - m, 
subtype_rel: A ⊆r B, 
rev_uimplies: rev_uimplies(P;Q), 
guard: {T}, 
rational-interval: ℚInterval, 
rat-interval-dimension: dim(I), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
istype: istype(T), 
inject: Inj(A;B;f), 
l_disjoint: l_disjoint(T;l1;l2), 
pi2: snd(t), 
pi1: fst(t), 
qavg: qavg(a;b), 
qeq: qeq(r;s), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
eq_int: (i =z j), 
qadd: r + s, 
is-half-interval: is-half-interval(I;J), 
band: p ∧b q, 
inhabited-rat-interval: Inhabited(I)
Lemmas referenced : 
rational-cube_wf, 
istype-void, 
istype-le, 
istype-assert, 
inhabited-rat-cube_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
list_wf, 
no_repeats_wf, 
l_member_wf, 
is-half-cube_wf, 
istype-less_than, 
primrec-wf2, 
assert_wf, 
sq_exists_wf, 
iff_wf, 
istype-nat, 
cons_wf, 
int_seg_properties, 
int_seg_wf, 
nil_wf, 
no_repeats_singleton, 
member_singleton, 
subtype_rel_function, 
rational-interval_wf, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2, 
subtype_rel_self, 
assert-inhabited-rat-cube, 
decidable__equal_int, 
rat-interval-dimension_wf, 
decidable__lt, 
q_less_wf, 
eqtt_to_assert, 
assert-q_less-eq, 
iff_weakening_equal, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
qless_wf, 
int_subtype_base, 
lt_int_wf, 
assert_of_lt_int, 
qavg_wf, 
append_wf, 
map_wf, 
no_repeats-append, 
no_repeats_map, 
subtype_rel_dep_function, 
iff_weakening_uiff, 
less_than_wf, 
member-map, 
qmul_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
rationals_wf, 
qmul-qdiv-cancel, 
int-subtype-rationals, 
qadd_wf, 
assert-qeq, 
qless_transitivity_2_qorder, 
qle_weakening_eq_qorder, 
qless_irreflexivity, 
qadd_ac_1_q, 
qadd_comm_q, 
qinverse_q, 
mon_ident_q, 
q_distrib, 
qmul_one_qrng, 
member_append, 
assert_functionality_wrt_uiff, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
assert-is-half-cube, 
set_subtype_base, 
lelt_wf, 
is-half-interval_wf, 
bor_wf, 
qeq_wf2, 
bool_cases, 
band_wf, 
btrue_wf, 
bfalse_wf, 
member_wf, 
iff_transitivity, 
assert_of_bor, 
assert_of_band, 
assert_elim, 
ifthenelse_wf, 
q_le_wf, 
assert-q_le-eq, 
qle-iff, 
qle_wf, 
bnot_wf, 
not_wf, 
qavg-same, 
assert_of_bnot, 
equal-wf-T-base, 
uiff_transitivity2, 
qmul-preserves-eq, 
qdiv_wf, 
qmul_ident
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
setIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
sqequalRule, 
voidElimination, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
functionIsType, 
productIsType, 
because_Cache, 
functionEquality, 
setEquality, 
productEquality, 
inhabitedIsType, 
dependent_set_memberFormation_alt, 
productElimination, 
functionExtensionality, 
imageElimination, 
addEquality, 
minusEquality, 
multiplyEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
equalityElimination, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
intEquality, 
baseClosed, 
sqequalBase, 
closedConclusion, 
independent_pairEquality, 
applyLambdaEquality, 
universeEquality, 
imageMemberEquality, 
unionIsType, 
inlFormation_alt, 
inrFormation_alt, 
hyp_replacement, 
unionEquality
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\{c:\mBbbQ{}Cube(k)|  \muparrow{}Inhabited(c)\}  .
    (\mexists{}L:\mBbbQ{}Cube(k)  List  [(no\_repeats(\mBbbQ{}Cube(k);L)  \mwedge{}  (\mforall{}h:\mBbbQ{}Cube(k).  ((h  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}is-half-cube(k;h;c))))])
Date html generated:
2020_05_20-AM-09_19_41
Last ObjectModification:
2019_11_02-PM-07_44_47
Theory : rationals
Home
Index