Nuprl Lemma : ball_functionality_wrt_bimplies

T:Type. ∀as:T List. ∀P,Q:T ⟶ 𝔹.  ((∀x:T. (↑(P[x] b Q[x])))  (↑(∀bx(:T) ∈ as. P[x] b (∀bx(:T) ∈ as. Q[x]))))


Proof




Definitions occuring in Statement :  ball: ball list: List bimplies: b q assert: b bool: 𝔹 so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] uimplies: supposing a prop: so_lambda: λ2x.t[x] iff: ⇐⇒ Q and: P ∧ Q bimplies: b q top: Top bnot: ¬bb ifthenelse: if then else fi  btrue: tt bor: p ∨bq bfalse: ff assert: b true: True ball: ball or: P ∨ Q guard: {T} rev_implies:  Q decidable: Dec(P) cand: c∧ B sq_type: SQType(T)
Lemmas referenced :  iff_weakening_uiff assert_wf bimplies_wf isect_wf assert_of_bimplies list_induction bor_wf bnot_wf ball_wf list_wf ball_nil_lemma ball_cons_lemma bool_wf equal_wf iff_transitivity band_wf or_wf not_wf assert_of_bor uiff_transitivity assert_of_bnot not_functionality_wrt_uiff assert_of_band decidable__and2 decidable__assert assert_elim and_wf bfalse_wf subtype_base_sq bool_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis lambdaFormation sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality introduction extract_by_obid isectElimination applyEquality functionExtensionality cumulativity because_Cache applyLambdaEquality isect_memberEquality sqequalRule lambdaEquality independent_functionElimination productElimination voidElimination voidEquality natural_numberEquality rename functionIsType universeIsType inhabitedIsType universeEquality equalityTransitivity equalitySymmetry productEquality independent_pairFormation unionElimination inlFormation inrFormation independent_isectElimination dependent_set_memberEquality setElimination instantiate

Latex:
\mforall{}T:Type.  \mforall{}as:T  List.  \mforall{}P,Q:T  {}\mrightarrow{}  \mBbbB{}.
    ((\mforall{}x:T.  (\muparrow{}(P[x]  {}\mRightarrow{}\msubb{}  Q[x])))  {}\mRightarrow{}  (\muparrow{}(\mforall{}\msubb{}x(:T)  \mmember{}  as.  P[x]  {}\mRightarrow{}\msubb{}  (\mforall{}\msubb{}x(:T)  \mmember{}  as.  Q[x]))))



Date html generated: 2019_10_16-PM-01_05_22
Last ObjectModification: 2018_09_26-PM-08_33_02

Theory : list_2


Home Index