Nuprl Lemma : ball_functionality_wrt_bimplies
∀T:Type. ∀as:T List. ∀P,Q:T ⟶ 𝔹.  ((∀x:T. (↑(P[x] ⇒b Q[x]))) ⇒ (↑(∀bx(:T) ∈ as. P[x] ⇒b (∀bx(:T) ∈ as. Q[x]))))
Proof
Definitions occuring in Statement : 
ball: ball, 
list: T List, 
bimplies: p ⇒b q, 
assert: ↑b, 
bool: 𝔹, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
uimplies: b supposing a, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
bimplies: p ⇒b q, 
top: Top, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bor: p ∨bq, 
bfalse: ff, 
assert: ↑b, 
true: True, 
ball: ball, 
or: P ∨ Q, 
guard: {T}, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
cand: A c∧ B, 
sq_type: SQType(T)
Lemmas referenced : 
iff_weakening_uiff, 
assert_wf, 
bimplies_wf, 
isect_wf, 
assert_of_bimplies, 
list_induction, 
bor_wf, 
bnot_wf, 
ball_wf, 
list_wf, 
ball_nil_lemma, 
ball_cons_lemma, 
bool_wf, 
equal_wf, 
iff_transitivity, 
band_wf, 
or_wf, 
not_wf, 
assert_of_bor, 
uiff_transitivity, 
assert_of_bnot, 
not_functionality_wrt_uiff, 
assert_of_band, 
decidable__and2, 
decidable__assert, 
assert_elim, 
and_wf, 
bfalse_wf, 
subtype_base_sq, 
bool_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
applyEquality, 
functionExtensionality, 
cumulativity, 
because_Cache, 
applyLambdaEquality, 
isect_memberEquality, 
sqequalRule, 
lambdaEquality, 
independent_functionElimination, 
productElimination, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
rename, 
functionIsType, 
universeIsType, 
inhabitedIsType, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
independent_pairFormation, 
unionElimination, 
inlFormation, 
inrFormation, 
independent_isectElimination, 
dependent_set_memberEquality, 
setElimination, 
instantiate
Latex:
\mforall{}T:Type.  \mforall{}as:T  List.  \mforall{}P,Q:T  {}\mrightarrow{}  \mBbbB{}.
    ((\mforall{}x:T.  (\muparrow{}(P[x]  {}\mRightarrow{}\msubb{}  Q[x])))  {}\mRightarrow{}  (\muparrow{}(\mforall{}\msubb{}x(:T)  \mmember{}  as.  P[x]  {}\mRightarrow{}\msubb{}  (\mforall{}\msubb{}x(:T)  \mmember{}  as.  Q[x]))))
Date html generated:
2019_10_16-PM-01_05_22
Last ObjectModification:
2018_09_26-PM-08_33_02
Theory : list_2
Home
Index