Nuprl Lemma : ffor_wf

T:Type. ∀Q:(T List) ⟶ Type. ∀b0:Q[[]]. ∀b1:∀x:T. Q[[x]]. ∀up:∀ys,ys':T List.  (Q[ys]  Q[ys']  Q[ys ys']).
zs:T List.
  (ffor(b0;b1;up;zs) ∈ Q[zs])


Proof




Definitions occuring in Statement :  ffor: ffor(b0;b1;up;zs) append: as bs cons: [a b] nil: [] list: List so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q ffor: ffor(b0;b1;up;zs) ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) append: as bs
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases list_ind_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int list_ind_cons_lemma list_wf cons_wf nil_wf all_wf append_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry cumulativity applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination functionExtensionality functionEquality universeEquality

Latex:
\mforall{}T:Type.  \mforall{}Q:(T  List)  {}\mrightarrow{}  Type.  \mforall{}b0:Q[[]].  \mforall{}b1:\mforall{}x:T.  Q[[x]].  \mforall{}up:\mforall{}ys,ys':T  List.
                                                                                                                                  (Q[ys]  {}\mRightarrow{}  Q[ys']  {}\mRightarrow{}  Q[ys  @  ys']).
\mforall{}zs:T  List.
    (ffor(b0;b1;up;zs)  \mmember{}  Q[zs])



Date html generated: 2017_10_01-AM-10_00_33
Last ObjectModification: 2017_03_03-PM-01_02_17

Theory : mset


Home Index