Nuprl Lemma : mset_diff_wf_f

s:DSet. ∀a,b:FiniteSet{s}.  (a b ∈ FiniteSet{s})


Proof




Definitions occuring in Statement :  mset_diff: b finite_set: FiniteSet{s} all: x:A. B[x] member: t ∈ T dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] guard: {T} finite_set: FiniteSet{s} dset: DSet so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s] prop: squash: T true: True uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q ndiff: -- b le: A ≤ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  less_than': less_than'(a;b) false: False not: ¬A bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b decidable: Dec(P) ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  finite_set_wf dset_wf fset_properties mset_diff_wf set_car_wf all_wf le_wf mset_count_wf nat_wf squash_wf true_wf mset_count_diff iff_weakening_equal imax_unfold subtract_wf le_int_wf bool_wf eqtt_to_assert assert_of_le_int false_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot decidable__le nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf itermSubtract_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_term_value_subtract_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution hypothesis introduction extract_by_obid isectElimination thin hypothesisEquality dependent_functionElimination setElimination rename dependent_set_memberEquality because_Cache sqequalRule lambdaEquality applyEquality natural_numberEquality imageElimination equalityTransitivity equalitySymmetry intEquality imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination unionElimination equalityElimination independent_pairFormation dependent_pairFormation promote_hyp instantiate cumulativity voidElimination applyLambdaEquality int_eqEquality isect_memberEquality voidEquality computeAll

Latex:
\mforall{}s:DSet.  \mforall{}a,b:FiniteSet\{s\}.    (a  -  b  \mmember{}  FiniteSet\{s\})



Date html generated: 2017_10_01-AM-10_00_28
Last ObjectModification: 2017_03_03-PM-01_01_47

Theory : mset


Home Index