Nuprl Lemma : swap_sym

n:ℕ. ∀i,j:ℕn.  (swap(i;j) swap(j;i) ∈ (ℕn ⟶ ℕn))


Proof




Definitions occuring in Statement :  swap: swap(i;j) int_seg: {i..j-} nat: all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: swap: swap(i;j) int_seg: {i..j-} implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  guard: {T} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: bfalse: ff subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  int_seg_wf nat_wf eq_int_wf eqtt_to_assert assert_of_eq_int int_seg_properties nat_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma le_wf less_than_wf eqff_to_assert set_subtype_base lelt_wf int_subtype_base bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int ifthenelse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis inhabitedIsType hypothesisEquality universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename lambdaEquality_alt unionElimination equalityElimination because_Cache productElimination independent_isectElimination sqequalRule equalityTransitivity equalitySymmetry dependent_functionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation dependent_set_memberEquality_alt productIsType equalityIsType2 baseApply closedConclusion baseClosed applyEquality intEquality promote_hyp instantiate cumulativity equalityIsType1

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.    (swap(i;j)  =  swap(j;i))



Date html generated: 2019_10_16-PM-00_59_13
Last ObjectModification: 2018_10_08-AM-09_28_24

Theory : perms_1


Home Index